Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungal Cleaning Crew

26.02.2013
Freiburg Chemists determine the structure of an enzyme that breaks down dyes

Fungi serve as a kind of natural cleaning crew for the ecosystem. They form enzymes that can degrade hazardous substances, converting natural as well as man-made toxins into harmless compounds.


Specimens of the edible fungus Jew’s ear on a tree. / Source: René Ullrich/IHI Zittau

For instance, they can help to break down synthetic dyes, which accumulate in great amounts during the production of textiles. Prof. Dr. Dietmar A. Plattner, Dr. Klaus Piontek, and Eric Strittmatter from the Institute of Organic Chemistry of the University of Freiburg and their colleagues from research groups at the International Graduate School of Zittau of the University of Dresden have determined the three-dimensional atomic structure of an enzyme of this kind, a dye-decolorizing peroxidase (DyP). Their findings have now been published in the renowned Journal of Biological Chemistry (JBC).

In nature, all organisms make use of enzymes in order to build up and break down vital substances. These biocatalysts are often superior to traditional chemical processes as they enable chemical reactions under especially mild conditions. Several fungal enzymes are commonly used in industry as a replacement for other chemicals. In clothing production, for example, they are the reagents responsible for giving blue jeans a so-called stonewashed or used look.

Plattner’s research team is studying several fungal enzymes and attempting to analyze their structure. The scientists hope that this will lead to a better understanding of how the enzymes function. Up until the end of 2010, the scientists were consortium members of the European Union project BIORENEW that was funded with a total of 15 million. They are now participating in the project BioIndustrie2021, which is receiving 1.1 euros in funding from the Federal Ministry of Education and Research. The Freiburg researchers are currently focusing their efforts on enzymes of the class heme peroxidase. In the future, they hope to use their findings to design custom-made enzymes for industrial applications, making many chemical processes more environmentally friendly.

The dye-decolorizing peroxidase (DyP) belongs to the class of heme peroxidases and is isolated from Jew’s ear, an edible fungus indigenous to Germany. Piontek and Strittmatter used x-ray crystallographic methods to elucidate the atomic structure of the enzyme. With the help of this model, they determined how the substrate molecules need to bind to the enzyme in order to be converted to other substances in a chemical reaction. While studying this mechanism, they discovered an apparent contradiction: The binding pocket is only large enough for some of the substrate molecules – for the smaller chemical compounds that are converted by the enzyme. However, it is too small for larger and bulky substrates such as synthetic dyes. Hence, there must be another binding site on the surface of the enzyme that larger molecules can dock onto. The members of Plattner’s team succeeded in locating this site. In addition, they identified the amino acid that enables the enzyme to interact with the substrate and transfers an electron from the substrate molecule to the center of the enzyme. This is the second example of a so-called redox-active surface amino acid to be found in fungal enzymes to date.

Original publication: http://www.jbc.org/content/288/6/4095

Contact:
Prof. Dr. Dietmar A. Plattner
Institute of Organic Chemistry and Biochemistry
University of Freiburg
Phone: +49 (0)761 / 203-6013
E-Mail: Dietmar.Plattner@chemie.uni-freiburg.de
Dr. Klaus Piontek
Institute of Organic Chemistry and Biochemistry
University of Freiburg
Phone: +49 (0)761 / 203-6036
E-Mail: Klaus.Piontek@ocbc.uni-freiburg.de

| University of Freiburg
Further information:
http://www.jbc.org/content/288/6/4095
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>