Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fungal Cleaning Crew

26.02.2013
Freiburg Chemists determine the structure of an enzyme that breaks down dyes

Fungi serve as a kind of natural cleaning crew for the ecosystem. They form enzymes that can degrade hazardous substances, converting natural as well as man-made toxins into harmless compounds.


Specimens of the edible fungus Jew’s ear on a tree. / Source: René Ullrich/IHI Zittau

For instance, they can help to break down synthetic dyes, which accumulate in great amounts during the production of textiles. Prof. Dr. Dietmar A. Plattner, Dr. Klaus Piontek, and Eric Strittmatter from the Institute of Organic Chemistry of the University of Freiburg and their colleagues from research groups at the International Graduate School of Zittau of the University of Dresden have determined the three-dimensional atomic structure of an enzyme of this kind, a dye-decolorizing peroxidase (DyP). Their findings have now been published in the renowned Journal of Biological Chemistry (JBC).

In nature, all organisms make use of enzymes in order to build up and break down vital substances. These biocatalysts are often superior to traditional chemical processes as they enable chemical reactions under especially mild conditions. Several fungal enzymes are commonly used in industry as a replacement for other chemicals. In clothing production, for example, they are the reagents responsible for giving blue jeans a so-called stonewashed or used look.

Plattner’s research team is studying several fungal enzymes and attempting to analyze their structure. The scientists hope that this will lead to a better understanding of how the enzymes function. Up until the end of 2010, the scientists were consortium members of the European Union project BIORENEW that was funded with a total of 15 million. They are now participating in the project BioIndustrie2021, which is receiving 1.1 euros in funding from the Federal Ministry of Education and Research. The Freiburg researchers are currently focusing their efforts on enzymes of the class heme peroxidase. In the future, they hope to use their findings to design custom-made enzymes for industrial applications, making many chemical processes more environmentally friendly.

The dye-decolorizing peroxidase (DyP) belongs to the class of heme peroxidases and is isolated from Jew’s ear, an edible fungus indigenous to Germany. Piontek and Strittmatter used x-ray crystallographic methods to elucidate the atomic structure of the enzyme. With the help of this model, they determined how the substrate molecules need to bind to the enzyme in order to be converted to other substances in a chemical reaction. While studying this mechanism, they discovered an apparent contradiction: The binding pocket is only large enough for some of the substrate molecules – for the smaller chemical compounds that are converted by the enzyme. However, it is too small for larger and bulky substrates such as synthetic dyes. Hence, there must be another binding site on the surface of the enzyme that larger molecules can dock onto. The members of Plattner’s team succeeded in locating this site. In addition, they identified the amino acid that enables the enzyme to interact with the substrate and transfers an electron from the substrate molecule to the center of the enzyme. This is the second example of a so-called redox-active surface amino acid to be found in fungal enzymes to date.

Original publication: http://www.jbc.org/content/288/6/4095

Contact:
Prof. Dr. Dietmar A. Plattner
Institute of Organic Chemistry and Biochemistry
University of Freiburg
Phone: +49 (0)761 / 203-6013
E-Mail: Dietmar.Plattner@chemie.uni-freiburg.de
Dr. Klaus Piontek
Institute of Organic Chemistry and Biochemistry
University of Freiburg
Phone: +49 (0)761 / 203-6036
E-Mail: Klaus.Piontek@ocbc.uni-freiburg.de

| University of Freiburg
Further information:
http://www.jbc.org/content/288/6/4095
http://www.uni-freiburg.de

More articles from Life Sciences:

nachricht Strong Evidence – New Insight in Muscle Function
27.04.2015 | Austrian Science Fund FWF

nachricht Cell fusion ‘eats up’ the ‘attractive cell’ in flowering plants
27.04.2015 | Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Strong Evidence – New Insight in Muscle Function

27.04.2015 | Life Sciences

The Future of Oil and Gas: Last of Her Kind

27.04.2015 | Power and Electrical Engineering

Tiny Lab Devices Could Attack Huge Problem of Drug-Resistant Infections

27.04.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>