Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017

Focus on the development of drug carriers from polymer chemicals for use in biological systems

The German Research Foundation (DFG) has agreed to fund the Mainz-based Collaborative Research Center (CRC) 1066 "Nanodimensional Polymer Therapeutics for Tumor Therapy" involved in the development of nanomaterials for cancer immunotherapy for another four years to the end of June 2021.


CRC 1066 logo

© CRC 1066

This extension confirms Mainz as a major research hub in this field that requires input from both chemistry and biomedicine alike. Contributing to CRC 1066 are the Chemistry, Pharmaceutical Sciences, and Physics institutes at Johannes Gutenberg University Mainz (JGU) together with the Mainz University Medical Center and the Max Planck Institute for Polymer Research (MPI-P) in Mainz. The German Research Foundation will provide nearly EUR 13 million in financing over the next four years.

CRC 1066 is pursuing the development of new, multi-functional nanoparticle drug carriers that can be employed in the immunotherapy of malignant melanomas. "Chemists, biologists, and physicians work together extensively here in three complementary and thus closely integrated areas," explained CRC Coordinator Professor Rudolf Zentel of the Institute of Organic Chemistry at Mainz University.

The objective is to use new nano-sized drug carriers to create targeted immune responses that can be used for treatment purposes. This can only be achieved by means of close interdisciplinary collaboration between polymer chemists, physical chemists, and (cancer) immunologists, i.e., three disciplines which traditionally have vastly different methodologies and scientific working methods.

"Over the past three years, we have managed to put in place an excellent foundation for our work on which we now mean to build. The main difficulty at first was learning to understand the various 'languages' used in the other scientific fields," Professor Katharina Landfester, Director of the MPI-P, pointed out. Professor Stephan Grabbe of the Mainz University Medical Center added:

"Our findings are being published in internationally eminent journals and we are very proud of the fact that we have recently seen the first fruits of our research being employed for the purpose of clinical trials in patients."

In the second funding period, the CRC will retain its current structure whereby it undertakes primarily polymer-chemical synthesis projects, translational-application oriented projects as well as analytical interdisciplinary projects.

At the same time, however, its focus will be more on the actual application of drug carriers created using polymer-chemical processes in biological systems rather than on the polymer synthesis method itself. The fully established collaboration between chemists and immunologists means that most individual projects can be jointly run by polymer chemists and immunologists.

The interdisciplinary nature of the CRC 1066 is reflected by the membership of its board. The board is composed of coordinator Professor Rudolf Zentel of Mainz University and the two vice coordinators Professor Stephan Grabbe of the Department of Dermatology of the Mainz University Medical Center and Professor Katharina Landfester of the Max Planck Institute for Polymer Research. Other members of the board are Professor Detlef Schuppan of the Department of Internal Medicine I of the Mainz University Medical Center and, as the representative for young researchers, Dr. Mathias Barz of the JGU Institute of Organic Chemistry.

Ill.:
http://www.uni-mainz.de/bilder_presse/09_orgchemie_sfb1066_II.jpg
CRC 1066 logo
© CRC 1066

Further information:
Professor Dr. Rudolf Zentel
Institute of Organic Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-20361
fax +49 6131 39-24778
e-mail: zentel@uni-mainz.de
http://www.ak-zentel.chemie.uni-mainz.de/eng/

Professor Dr. Stephan Grabbe
Department of Dermatology
Mainz University Medical Center
55131 Mainz, GERMANY
phone +49 6131 17-4412
e-mail: stephan.grabbe@unimedizin-mainz.de
http://www.hautklinik-mainz.de/dermatology/scientists/overview.html?L=1

Professor Dr. Katharina Landfester
Max Planck Institute for Polymer Research (MPI-P)
55128 Mainz, GERMANY
phone +49 6131 379-171
e-mail: landfester@mpip-mainz.mpg.de
http://www.mpip-mainz.mpg.de/physical_chem_of_polymers

Related links:
* http://www.crc1066.uni-mainz.de/ – Collaborative Research Center 1066: Nanodimensional polymer therapeutics for tumor therapy
* http://www.uni-mainz.de/presse/16451_ENG_HTML.php – press release "Johannes Gutenberg University Mainz obtains new Collaborative Research Center on 'Nanodimensional polymer therapeutics for tumor therapy'" (31 May 2013)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>