Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017

Focus on the development of drug carriers from polymer chemicals for use in biological systems

The German Research Foundation (DFG) has agreed to fund the Mainz-based Collaborative Research Center (CRC) 1066 "Nanodimensional Polymer Therapeutics for Tumor Therapy" involved in the development of nanomaterials for cancer immunotherapy for another four years to the end of June 2021.


CRC 1066 logo

© CRC 1066

This extension confirms Mainz as a major research hub in this field that requires input from both chemistry and biomedicine alike. Contributing to CRC 1066 are the Chemistry, Pharmaceutical Sciences, and Physics institutes at Johannes Gutenberg University Mainz (JGU) together with the Mainz University Medical Center and the Max Planck Institute for Polymer Research (MPI-P) in Mainz. The German Research Foundation will provide nearly EUR 13 million in financing over the next four years.

CRC 1066 is pursuing the development of new, multi-functional nanoparticle drug carriers that can be employed in the immunotherapy of malignant melanomas. "Chemists, biologists, and physicians work together extensively here in three complementary and thus closely integrated areas," explained CRC Coordinator Professor Rudolf Zentel of the Institute of Organic Chemistry at Mainz University.

The objective is to use new nano-sized drug carriers to create targeted immune responses that can be used for treatment purposes. This can only be achieved by means of close interdisciplinary collaboration between polymer chemists, physical chemists, and (cancer) immunologists, i.e., three disciplines which traditionally have vastly different methodologies and scientific working methods.

"Over the past three years, we have managed to put in place an excellent foundation for our work on which we now mean to build. The main difficulty at first was learning to understand the various 'languages' used in the other scientific fields," Professor Katharina Landfester, Director of the MPI-P, pointed out. Professor Stephan Grabbe of the Mainz University Medical Center added:

"Our findings are being published in internationally eminent journals and we are very proud of the fact that we have recently seen the first fruits of our research being employed for the purpose of clinical trials in patients."

In the second funding period, the CRC will retain its current structure whereby it undertakes primarily polymer-chemical synthesis projects, translational-application oriented projects as well as analytical interdisciplinary projects.

At the same time, however, its focus will be more on the actual application of drug carriers created using polymer-chemical processes in biological systems rather than on the polymer synthesis method itself. The fully established collaboration between chemists and immunologists means that most individual projects can be jointly run by polymer chemists and immunologists.

The interdisciplinary nature of the CRC 1066 is reflected by the membership of its board. The board is composed of coordinator Professor Rudolf Zentel of Mainz University and the two vice coordinators Professor Stephan Grabbe of the Department of Dermatology of the Mainz University Medical Center and Professor Katharina Landfester of the Max Planck Institute for Polymer Research. Other members of the board are Professor Detlef Schuppan of the Department of Internal Medicine I of the Mainz University Medical Center and, as the representative for young researchers, Dr. Mathias Barz of the JGU Institute of Organic Chemistry.

Ill.:
http://www.uni-mainz.de/bilder_presse/09_orgchemie_sfb1066_II.jpg
CRC 1066 logo
© CRC 1066

Further information:
Professor Dr. Rudolf Zentel
Institute of Organic Chemistry
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-20361
fax +49 6131 39-24778
e-mail: zentel@uni-mainz.de
http://www.ak-zentel.chemie.uni-mainz.de/eng/

Professor Dr. Stephan Grabbe
Department of Dermatology
Mainz University Medical Center
55131 Mainz, GERMANY
phone +49 6131 17-4412
e-mail: stephan.grabbe@unimedizin-mainz.de
http://www.hautklinik-mainz.de/dermatology/scientists/overview.html?L=1

Professor Dr. Katharina Landfester
Max Planck Institute for Polymer Research (MPI-P)
55128 Mainz, GERMANY
phone +49 6131 379-171
e-mail: landfester@mpip-mainz.mpg.de
http://www.mpip-mainz.mpg.de/physical_chem_of_polymers

Related links:
* http://www.crc1066.uni-mainz.de/ – Collaborative Research Center 1066: Nanodimensional polymer therapeutics for tumor therapy
* http://www.uni-mainz.de/presse/16451_ENG_HTML.php – press release "Johannes Gutenberg University Mainz obtains new Collaborative Research Center on 'Nanodimensional polymer therapeutics for tumor therapy'" (31 May 2013)

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

nachricht Keeping the excitement under control
18.04.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>