Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Functions of the Alzheimer Key Protein APP

Second funding period: DFG funds research group headed by Heidelberg scientist Prof. Dr. Ulrike Müller

The interdisciplinary transregional research group “Physiological Functions of the APP Gene Family in the Central Nervous System” will continue its work for another three years. The German Research Foundation (DFG) has approved a second funding period involving a total of EUR 1.8 million.

The research group established in 2010 is coordinated by Prof. Dr. Ulrike Müller from the Institute of Pharmacy and Molecular Biotechnology at Heidelberg University. In addition to the Heidelberg team, scientists from Braunschweig, Frankfurt, Kaiserslautern and Mainz. are jointly studying the APP protein, which plays a key role not only in the pathogenesis of Alzheimer’s disease, but also in the communication of nerve cells in the brain of healthy people. The focus is on the influence of this protein on learning and memory processes, and on acquiring a better understanding of APP functions, in order to be able to develop new treatments for Alzheimer’s.

Alzheimer’s disease is triggered by deposits of insoluble protein aggregates forming “plaques” in the vicinity of nerve cells in the brain. These plaques are mainly composed of the ß-amyloid peptide, which damages the nerve cells until they die. This small protein is derived via proteolysis from a much larger precursor, the amyloid precursor protein APP. As Prof. Müller explains, the normal cell biological and physiological functions of APP and its proteolytic products are hitherto largely unknown. And yet APP is produced in almost all brain cells, particularly in regions important for memory formation. The aim of this research network with its interdisciplinary approach is to gain a better understanding of the physiological functions of APP, from the molecular level to its role in the intact nervous system. The scientists also want to find out what role APP and related proteins play in preventing damage to nerve cells or fostering their regeneration.

The research group “Physiological functions of the APP gene family in the central nervous system” consists of five teams of scientists from the universities of Heidelberg, Frankfurt and Mainz, and the Technical Universities of Kaiserslautern and Braunschweig. The Heidelberg projects will receive a total of EUR 950,000 in funding. Two Bioscience research groups from Heidelberg University are involved: Prof. Müller’s team is analysing the role of the APP gene family in the central nervous system using genetically modified mouse models. In a joint project with Dr. Andreas Vlachos and Prof. Dr. Thomas Deller from Frankfurt University, Prof. Müller is investigating the role of APP in functional adaptation processes for maintaining neuronal circuits. At Heidelberg University’s Biochemistry Center the research group headed by Dr. Klemens Wild is examining the three-dimensional structure of APP by means of X-ray structural analysis. At the Heidelberg Medical Faculty, Prof. Dr. Andreas Draguhn’s team is studying the role of APP for synaptic communication in neuronal networks. These projects are based at the Institute of Physiology and Pathophysiology.

Information online:
Prof. Dr. Ulrike Müller
Institute of Pharmacy and Molecular Biotechnology
Phone +49 6221 54-6717

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>