Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functions of the Alzheimer Key Protein APP

04.11.2013
Second funding period: DFG funds research group headed by Heidelberg scientist Prof. Dr. Ulrike Müller

The interdisciplinary transregional research group “Physiological Functions of the APP Gene Family in the Central Nervous System” will continue its work for another three years. The German Research Foundation (DFG) has approved a second funding period involving a total of EUR 1.8 million.

The research group established in 2010 is coordinated by Prof. Dr. Ulrike Müller from the Institute of Pharmacy and Molecular Biotechnology at Heidelberg University. In addition to the Heidelberg team, scientists from Braunschweig, Frankfurt, Kaiserslautern and Mainz. are jointly studying the APP protein, which plays a key role not only in the pathogenesis of Alzheimer’s disease, but also in the communication of nerve cells in the brain of healthy people. The focus is on the influence of this protein on learning and memory processes, and on acquiring a better understanding of APP functions, in order to be able to develop new treatments for Alzheimer’s.

Alzheimer’s disease is triggered by deposits of insoluble protein aggregates forming “plaques” in the vicinity of nerve cells in the brain. These plaques are mainly composed of the ß-amyloid peptide, which damages the nerve cells until they die. This small protein is derived via proteolysis from a much larger precursor, the amyloid precursor protein APP. As Prof. Müller explains, the normal cell biological and physiological functions of APP and its proteolytic products are hitherto largely unknown. And yet APP is produced in almost all brain cells, particularly in regions important for memory formation. The aim of this research network with its interdisciplinary approach is to gain a better understanding of the physiological functions of APP, from the molecular level to its role in the intact nervous system. The scientists also want to find out what role APP and related proteins play in preventing damage to nerve cells or fostering their regeneration.

The research group “Physiological functions of the APP gene family in the central nervous system” consists of five teams of scientists from the universities of Heidelberg, Frankfurt and Mainz, and the Technical Universities of Kaiserslautern and Braunschweig. The Heidelberg projects will receive a total of EUR 950,000 in funding. Two Bioscience research groups from Heidelberg University are involved: Prof. Müller’s team is analysing the role of the APP gene family in the central nervous system using genetically modified mouse models. In a joint project with Dr. Andreas Vlachos and Prof. Dr. Thomas Deller from Frankfurt University, Prof. Müller is investigating the role of APP in functional adaptation processes for maintaining neuronal circuits. At Heidelberg University’s Biochemistry Center the research group headed by Dr. Klemens Wild is examining the three-dimensional structure of APP by means of X-ray structural analysis. At the Heidelberg Medical Faculty, Prof. Dr. Andreas Draguhn’s team is studying the role of APP for synaptic communication in neuronal networks. These projects are based at the Institute of Physiology and Pathophysiology.

Information online:
http://www.uni-heidelberg.de/app-function/index.html
Contact:
Prof. Dr. Ulrike Müller
Institute of Pharmacy and Molecular Biotechnology
Phone +49 6221 54-6717
u.mueller@urz.uni-hd.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de/app-function/index.html

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>