Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functions of the Alzheimer Key Protein APP

04.11.2013
Second funding period: DFG funds research group headed by Heidelberg scientist Prof. Dr. Ulrike Müller

The interdisciplinary transregional research group “Physiological Functions of the APP Gene Family in the Central Nervous System” will continue its work for another three years. The German Research Foundation (DFG) has approved a second funding period involving a total of EUR 1.8 million.

The research group established in 2010 is coordinated by Prof. Dr. Ulrike Müller from the Institute of Pharmacy and Molecular Biotechnology at Heidelberg University. In addition to the Heidelberg team, scientists from Braunschweig, Frankfurt, Kaiserslautern and Mainz. are jointly studying the APP protein, which plays a key role not only in the pathogenesis of Alzheimer’s disease, but also in the communication of nerve cells in the brain of healthy people. The focus is on the influence of this protein on learning and memory processes, and on acquiring a better understanding of APP functions, in order to be able to develop new treatments for Alzheimer’s.

Alzheimer’s disease is triggered by deposits of insoluble protein aggregates forming “plaques” in the vicinity of nerve cells in the brain. These plaques are mainly composed of the ß-amyloid peptide, which damages the nerve cells until they die. This small protein is derived via proteolysis from a much larger precursor, the amyloid precursor protein APP. As Prof. Müller explains, the normal cell biological and physiological functions of APP and its proteolytic products are hitherto largely unknown. And yet APP is produced in almost all brain cells, particularly in regions important for memory formation. The aim of this research network with its interdisciplinary approach is to gain a better understanding of the physiological functions of APP, from the molecular level to its role in the intact nervous system. The scientists also want to find out what role APP and related proteins play in preventing damage to nerve cells or fostering their regeneration.

The research group “Physiological functions of the APP gene family in the central nervous system” consists of five teams of scientists from the universities of Heidelberg, Frankfurt and Mainz, and the Technical Universities of Kaiserslautern and Braunschweig. The Heidelberg projects will receive a total of EUR 950,000 in funding. Two Bioscience research groups from Heidelberg University are involved: Prof. Müller’s team is analysing the role of the APP gene family in the central nervous system using genetically modified mouse models. In a joint project with Dr. Andreas Vlachos and Prof. Dr. Thomas Deller from Frankfurt University, Prof. Müller is investigating the role of APP in functional adaptation processes for maintaining neuronal circuits. At Heidelberg University’s Biochemistry Center the research group headed by Dr. Klemens Wild is examining the three-dimensional structure of APP by means of X-ray structural analysis. At the Heidelberg Medical Faculty, Prof. Dr. Andreas Draguhn’s team is studying the role of APP for synaptic communication in neuronal networks. These projects are based at the Institute of Physiology and Pathophysiology.

Information online:
http://www.uni-heidelberg.de/app-function/index.html
Contact:
Prof. Dr. Ulrike Müller
Institute of Pharmacy and Molecular Biotechnology
Phone +49 6221 54-6717
u.mueller@urz.uni-hd.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de/app-function/index.html

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>