Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functions of the Alzheimer Key Protein APP

04.11.2013
Second funding period: DFG funds research group headed by Heidelberg scientist Prof. Dr. Ulrike Müller

The interdisciplinary transregional research group “Physiological Functions of the APP Gene Family in the Central Nervous System” will continue its work for another three years. The German Research Foundation (DFG) has approved a second funding period involving a total of EUR 1.8 million.

The research group established in 2010 is coordinated by Prof. Dr. Ulrike Müller from the Institute of Pharmacy and Molecular Biotechnology at Heidelberg University. In addition to the Heidelberg team, scientists from Braunschweig, Frankfurt, Kaiserslautern and Mainz. are jointly studying the APP protein, which plays a key role not only in the pathogenesis of Alzheimer’s disease, but also in the communication of nerve cells in the brain of healthy people. The focus is on the influence of this protein on learning and memory processes, and on acquiring a better understanding of APP functions, in order to be able to develop new treatments for Alzheimer’s.

Alzheimer’s disease is triggered by deposits of insoluble protein aggregates forming “plaques” in the vicinity of nerve cells in the brain. These plaques are mainly composed of the ß-amyloid peptide, which damages the nerve cells until they die. This small protein is derived via proteolysis from a much larger precursor, the amyloid precursor protein APP. As Prof. Müller explains, the normal cell biological and physiological functions of APP and its proteolytic products are hitherto largely unknown. And yet APP is produced in almost all brain cells, particularly in regions important for memory formation. The aim of this research network with its interdisciplinary approach is to gain a better understanding of the physiological functions of APP, from the molecular level to its role in the intact nervous system. The scientists also want to find out what role APP and related proteins play in preventing damage to nerve cells or fostering their regeneration.

The research group “Physiological functions of the APP gene family in the central nervous system” consists of five teams of scientists from the universities of Heidelberg, Frankfurt and Mainz, and the Technical Universities of Kaiserslautern and Braunschweig. The Heidelberg projects will receive a total of EUR 950,000 in funding. Two Bioscience research groups from Heidelberg University are involved: Prof. Müller’s team is analysing the role of the APP gene family in the central nervous system using genetically modified mouse models. In a joint project with Dr. Andreas Vlachos and Prof. Dr. Thomas Deller from Frankfurt University, Prof. Müller is investigating the role of APP in functional adaptation processes for maintaining neuronal circuits. At Heidelberg University’s Biochemistry Center the research group headed by Dr. Klemens Wild is examining the three-dimensional structure of APP by means of X-ray structural analysis. At the Heidelberg Medical Faculty, Prof. Dr. Andreas Draguhn’s team is studying the role of APP for synaptic communication in neuronal networks. These projects are based at the Institute of Physiology and Pathophysiology.

Information online:
http://www.uni-heidelberg.de/app-function/index.html
Contact:
Prof. Dr. Ulrike Müller
Institute of Pharmacy and Molecular Biotechnology
Phone +49 6221 54-6717
u.mueller@urz.uni-hd.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de/app-function/index.html

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>