Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functional Magnetic Resonance Imaging under the Magnifying Glass

08.11.2012
Tübinger scientists reveal laminar differences in neurovascular coupling between positive and negative BOLD responses.

The cortex consists of six different layers, which vary in their anatomical and physiological properties. It plays a key role in the cognitive capacities of the brain. Since the cortical layers are segregated functionally, we could potentially say something about the neural processes that take place when an area is activated if we could see different signals in the different layers.


A: The stimulus used to elicit positive and negative BOLD responses in the visual cortex;
B: Positive and negative BOLD responses in monkey primary visual cortex to a visual stimulus;
C: The cerebral blood volume (CBV) response to a visual stimulus is increased in the entire primary visual cortex.

Jozien Goense / Max Planck Institute for Biologische Cybernetics, Tübingen

Jozien Goense from the Max Planck Institute for Biological Cybernetics in Tübingen, Germany and her colleagues used functional Magnetic Resonance Imaging (fMRI) to observe these layer-specific neural processes within the cortex and found different mechanisms for fMRI response increases and decreases as well as cortical layer-dependent differences in the neurovascular coupling mechanism.

The cortex is the outermost layer of the brain and plays a key role in perception, memory, attention, thought, language and consciousness. In mammals, it consists of six horizontal layers, each with different anatomical and physiological properties and different connectivity. These layers have so far been elusive to study in vivo, for several reasons, like a lack of spatial resolution in functional Magnetic Resonance Imaging (fMRI), the inability to see deeper layers with various optical methods, or difficulty in determining the exact recording depth of electrodes. Therefore, if we can visualize the signals in the different layers, it would allow us to better probe the cortical circuitry, for example to determine the processing steps that occur between the input and output of a given cortical area.

Functional Magnetic Resonance Imaging (fMRI) is one of the most used tools to observe the functional activity of the brain. fMRI is a non-invasive method that measures brain activity by detecting associated changes in blood flow and oxygen consumption. The primary form of fMRI uses the blood-oxygenation-level-dependent (BOLD) contrast, which reflects the oxygen concentration in the blood, and through this indicates which brain areas are activated upon a certain stimulus. However, typical fMRI studies measure activation on the scale of a few millimeters and are not able to resolve the cortical layers. Furthermore, it is also not yet known if and how layer-specific neural activity is reflected in the BOLD-response. Other functional imaging methods that are less commonly used, but can shed light on this question, are based on the cerebral blood volume (CBV), whereby the amount of blood in the activated brain region is measured, or based on cerebral blood flow (CBF). These various methods have different sensitivities and measure different aspects of the blood flow response upon neural activity.

Jozien Goense is a project leader in the Department for Physiology of Cognitive Processes headed by Nikos Logothetis at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. She and her colleague Hellmut Merkle from the Laboratory of Functional and Molecular Imaging at the National Institutes of Health in Bethesda (USA), used high-resolution fMRI to measure BOLD-, CBV- and CBF responses to stimuli that elicit positive- and negative BOLD signals in the macaque primary visual cortex. They compared the activity patterns in response to excitatory stimuli, and stimuli that are known to give negative BOLD responses. Negative BOLD responses are reductions in the BOLD signal, often seen adjacent to stimulated regions. The negative BOLD signal is therefore thought to result from neuronal suppression.

They found that a negative BOLD response is not just the inverse of the positive response, but that it has a separate mechanism. Furthermore, the different layers responded differently to the stimuli. This indicates that the neurovascular coupling mechanism, which is the mechanism that provides the link between the neural signals and the BOLD-response, differs in the different layers and for the two stimuli. This means that potentially the layer-specific differences in the responses can be used to separate what kind of processes occur in the cortex.

These findings suggest different mechanisms for neurovascular coupling for BOLD increases and decreases as well as laminar differences in neurovascular coupling. The consequences of these findings are quite fundamental, since it may improve the interpretation of the BOLD signals in fMRI studies, and especially the negative one. Furthermore, it opens up the possibility to study neural processes within the cortical sheet, which would expand the applicability of fMRI and push it to smaller spatial scales than the ones it is currently used at.

Original Publication:
J. Goense, H. Merkle, N. K. Logothetis. (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron, doi: 10.1016/j.neuron.2012.09.019
Contact:
Dr. Jozien Goense
Phone: +49 7071 601-1704
E-mail: jozien.goense@tuebingen.mpg.de
Stephanie Bertenbreiter (Public Relations)
Phone: +49 7071 601-1792
E-mail: presse-kyb@tuebingen.mpg.de
The Max Planck Institute for Biological Cybernetics works in the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://www.kyb.tuebingen.mpg.de/
http://www.tuebingen.mpg.de/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>