Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Functional Magnetic Resonance Imaging under the Magnifying Glass

08.11.2012
Tübinger scientists reveal laminar differences in neurovascular coupling between positive and negative BOLD responses.

The cortex consists of six different layers, which vary in their anatomical and physiological properties. It plays a key role in the cognitive capacities of the brain. Since the cortical layers are segregated functionally, we could potentially say something about the neural processes that take place when an area is activated if we could see different signals in the different layers.


A: The stimulus used to elicit positive and negative BOLD responses in the visual cortex;
B: Positive and negative BOLD responses in monkey primary visual cortex to a visual stimulus;
C: The cerebral blood volume (CBV) response to a visual stimulus is increased in the entire primary visual cortex.

Jozien Goense / Max Planck Institute for Biologische Cybernetics, Tübingen

Jozien Goense from the Max Planck Institute for Biological Cybernetics in Tübingen, Germany and her colleagues used functional Magnetic Resonance Imaging (fMRI) to observe these layer-specific neural processes within the cortex and found different mechanisms for fMRI response increases and decreases as well as cortical layer-dependent differences in the neurovascular coupling mechanism.

The cortex is the outermost layer of the brain and plays a key role in perception, memory, attention, thought, language and consciousness. In mammals, it consists of six horizontal layers, each with different anatomical and physiological properties and different connectivity. These layers have so far been elusive to study in vivo, for several reasons, like a lack of spatial resolution in functional Magnetic Resonance Imaging (fMRI), the inability to see deeper layers with various optical methods, or difficulty in determining the exact recording depth of electrodes. Therefore, if we can visualize the signals in the different layers, it would allow us to better probe the cortical circuitry, for example to determine the processing steps that occur between the input and output of a given cortical area.

Functional Magnetic Resonance Imaging (fMRI) is one of the most used tools to observe the functional activity of the brain. fMRI is a non-invasive method that measures brain activity by detecting associated changes in blood flow and oxygen consumption. The primary form of fMRI uses the blood-oxygenation-level-dependent (BOLD) contrast, which reflects the oxygen concentration in the blood, and through this indicates which brain areas are activated upon a certain stimulus. However, typical fMRI studies measure activation on the scale of a few millimeters and are not able to resolve the cortical layers. Furthermore, it is also not yet known if and how layer-specific neural activity is reflected in the BOLD-response. Other functional imaging methods that are less commonly used, but can shed light on this question, are based on the cerebral blood volume (CBV), whereby the amount of blood in the activated brain region is measured, or based on cerebral blood flow (CBF). These various methods have different sensitivities and measure different aspects of the blood flow response upon neural activity.

Jozien Goense is a project leader in the Department for Physiology of Cognitive Processes headed by Nikos Logothetis at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. She and her colleague Hellmut Merkle from the Laboratory of Functional and Molecular Imaging at the National Institutes of Health in Bethesda (USA), used high-resolution fMRI to measure BOLD-, CBV- and CBF responses to stimuli that elicit positive- and negative BOLD signals in the macaque primary visual cortex. They compared the activity patterns in response to excitatory stimuli, and stimuli that are known to give negative BOLD responses. Negative BOLD responses are reductions in the BOLD signal, often seen adjacent to stimulated regions. The negative BOLD signal is therefore thought to result from neuronal suppression.

They found that a negative BOLD response is not just the inverse of the positive response, but that it has a separate mechanism. Furthermore, the different layers responded differently to the stimuli. This indicates that the neurovascular coupling mechanism, which is the mechanism that provides the link between the neural signals and the BOLD-response, differs in the different layers and for the two stimuli. This means that potentially the layer-specific differences in the responses can be used to separate what kind of processes occur in the cortex.

These findings suggest different mechanisms for neurovascular coupling for BOLD increases and decreases as well as laminar differences in neurovascular coupling. The consequences of these findings are quite fundamental, since it may improve the interpretation of the BOLD signals in fMRI studies, and especially the negative one. Furthermore, it opens up the possibility to study neural processes within the cortical sheet, which would expand the applicability of fMRI and push it to smaller spatial scales than the ones it is currently used at.

Original Publication:
J. Goense, H. Merkle, N. K. Logothetis. (2012) High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron, doi: 10.1016/j.neuron.2012.09.019
Contact:
Dr. Jozien Goense
Phone: +49 7071 601-1704
E-mail: jozien.goense@tuebingen.mpg.de
Stephanie Bertenbreiter (Public Relations)
Phone: +49 7071 601-1792
E-mail: presse-kyb@tuebingen.mpg.de
The Max Planck Institute for Biological Cybernetics works in the elucidation of cognitive processes. It employs about 300 people from more than 40 countries and is located at the Max Planck Campus in Tübingen, Germany. The Max Planck Institute for Biological Cybernetics is one of 80 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany and abroad.

Stephanie Bertenbreiter | Max-Planck-Institut
Further information:
http://www.kyb.tuebingen.mpg.de/
http://www.tuebingen.mpg.de/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>