Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What is the function of lymph nodes?

27.05.2009
If we imagine our immune system to be a police force for our bodies, then previous work has suggested that the Lymph nodes would be the best candidate structures within the body to act as police stations – the regions in which the immune response is organised.

However, Prof. Burkhard Becher, University of Zurich, suggests in a new paper – published in this week's issue of PLoS Biology – that lymph nodes are not essential in the mouse in marshalling T-cells (a main immune foot soldier) to respond to a breach of the skin barrier.

This result is both surprising in itself, and suggests a novel function for the liver as an alternate site for T-cell activation.

When a child falls off its bike and scratches its skin, the body responds via the immune system. Scavenger cells at the site of the wound pick up antigens –tiny particles derived from invading microorganisms and dirt that the body will recognize as foreign. These antigens are delivered to the nearest lymph node. T and B cells (immune cells) carrying the matching antigen-receptors on their surface will be stimulated by the concentrated antigen now present in these lymph nodes. T cells will then go on and orchestrate the defensive response against the invaders, whereas B cells will transform into antibody-producing cells flooding the body with antibodies which act against the hostile microorganisms.

Mice that lack lymph nodes due to a genetic mutation (alymphoplasia) are severely immuno-compromised and struggle in fighting infections and tumors. New work by Melanie Greter, Janin Hofmann and Burkhard Becher from the Institute of experimental Immunology at the University of Zurich reports that the immunodeficiency associated with alymphoplasia is not due to the lack of lymph nodes, but caused by the genetic lesion on immune cells themselves. The new paper shows that in the mouse T cell function is unperturbed in the absence of lymph nodes, whereas B cell activation and antibody secretion is strongly affected. That T cell responses can be launched outside of lymph nodes is highly surprising, because this means that T cells can encounter antigens elsewhere in order to become activated. By tracing the migration of fluorescent particles from the site of antigen invasion (i.e. the wound) the scientists discovered that the liver could serve as a surrogate structure for T cell activation. During embryonic development, the liver is the first organ to provide us with blood and immune cells. Apparently, at least in the mouse the liver continues to serve as an "immune organ" even during adulthood.

This work suggests an explanation for the curious fact that patients receiving a liver transplant sometimes inherit the donor's allergies and immune repertoire, so in keeping with the idea that donor immune information is being transplanted. It also suggests that the liver as an immune organ is an evolutionary remnant from the time before lymph nodes developed in higher birds and mammals. Cold-blooded vertebrates have functioning T and B cells but no lymph nodes. The main achievement of the development of lymph nodes in mammals is a drastic improvement for the production of better antibodies. T cells on the other hand have not changed their function much during evolution and the work by the Zurich group finally provides solid evidence for the versatility and promiscuity of this cell type.

Prof. Burkhard Becher | EurekAlert!
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>