Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New function discovered in cancer prevention protein

Protein p53 is also activated to control the creation of ova and spermatozoids

Protein 53 is very important in protecting against cancer given that it prevents cancer-causing mutations from accumulating and its inactivation is closely linked to the proliferation of tumour cells.

UAB lecturer Ignasi Roig participated in the study. Formed by an international research team, the study served to discover that this protein played an unexpected physiological role: it also becomes activated during the formation process of ova and spermatozoids. The discovery, published in Science, could open the door to new approaches and ways of studying the disease.

Protein 53 is known as the guardian of the genome since it is basic for the genome's integrity by preventing the accumulation of mutations originating either by the cell's own mechanisms or by the action of external agents. The protein becomes activated in response to specific signals such as breaks in DNA. This activation implies a slowing of the cell's cycle which allows it to repair itself from the damage. If the damage is not repaired on time, the activation of p53 results in programmed cell death known as apoptosis. This causes the gene encoding the protein, which in humans is the TP53 gene, to be seen as a tumour suppressor since its inactivation can make it easier for many types of tumour cells to develop.

Scientists had long wondered about the origin and evolutionary appearance of this gene. From an evolutionary point of view it is understandable to think that p53 came into existence without necessarily acting as a tumour suppressor and, therefore, must have had other functions which until now remained unknown.

Through the observation of genetically modified flies to determine the activation of p53, the team led by Dr John Abrams of the University of Texas Southwestern Medical Center and with the participation of Dr Ignasi Roig from the Cytology and Histology Unit of the Department of Cellular Biology, Physiology and Immunology at Universitat Autònoma de Barcelona, discovered that p53 becomes activated during the formation of gametes (spermatozoids and ova). It becomes activated specifically during meiosis, the cell division process resulting in gametes. It is a moment in which the cell automatically breaks DNA all along its genome. Repairing these breaks, which is essential for meiosis to develop correctly, must be controlled closely in order to prevent the accumulation of mutations and the possibility of their binding to the gametes. P53 is in charge of developing this process control mechanism.

Scientists additionally discovered that the fact that p53 becomes activated during gametogenesis is something that has been conserved throughout evolution. The research team observed similar activations during the formation of spermatozoids in mice, which reaffirms the importance of this control mechanism.

The results of the study, published in Science, are revealing and help to understand more about the functions of this essential protein which stops the formation of tumours and therefore could open the door to new approaches in the study of cancer. The research describes for the first time the physiological role of p53 in the development of meiosis and suggests that the function of the tumour suppressor gene can be result of an evolution of primitive activities related with the progression of meiosis.

Ignasi Roig | EurekAlert!
Further information:

Further reports about: DNA Protein formation of gametes protein p53 spermatozoids tumour cells

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>