Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New function discovered in cancer prevention protein

08.06.2010
Protein p53 is also activated to control the creation of ova and spermatozoids

Protein 53 is very important in protecting against cancer given that it prevents cancer-causing mutations from accumulating and its inactivation is closely linked to the proliferation of tumour cells.

UAB lecturer Ignasi Roig participated in the study. Formed by an international research team, the study served to discover that this protein played an unexpected physiological role: it also becomes activated during the formation process of ova and spermatozoids. The discovery, published in Science, could open the door to new approaches and ways of studying the disease.

Protein 53 is known as the guardian of the genome since it is basic for the genome's integrity by preventing the accumulation of mutations originating either by the cell's own mechanisms or by the action of external agents. The protein becomes activated in response to specific signals such as breaks in DNA. This activation implies a slowing of the cell's cycle which allows it to repair itself from the damage. If the damage is not repaired on time, the activation of p53 results in programmed cell death known as apoptosis. This causes the gene encoding the protein, which in humans is the TP53 gene, to be seen as a tumour suppressor since its inactivation can make it easier for many types of tumour cells to develop.

Scientists had long wondered about the origin and evolutionary appearance of this gene. From an evolutionary point of view it is understandable to think that p53 came into existence without necessarily acting as a tumour suppressor and, therefore, must have had other functions which until now remained unknown.

Through the observation of genetically modified flies to determine the activation of p53, the team led by Dr John Abrams of the University of Texas Southwestern Medical Center and with the participation of Dr Ignasi Roig from the Cytology and Histology Unit of the Department of Cellular Biology, Physiology and Immunology at Universitat Autònoma de Barcelona, discovered that p53 becomes activated during the formation of gametes (spermatozoids and ova). It becomes activated specifically during meiosis, the cell division process resulting in gametes. It is a moment in which the cell automatically breaks DNA all along its genome. Repairing these breaks, which is essential for meiosis to develop correctly, must be controlled closely in order to prevent the accumulation of mutations and the possibility of their binding to the gametes. P53 is in charge of developing this process control mechanism.

Scientists additionally discovered that the fact that p53 becomes activated during gametogenesis is something that has been conserved throughout evolution. The research team observed similar activations during the formation of spermatozoids in mice, which reaffirms the importance of this control mechanism.

The results of the study, published in Science, are revealing and help to understand more about the functions of this essential protein which stops the formation of tumours and therefore could open the door to new approaches in the study of cancer. The research describes for the first time the physiological role of p53 in the development of meiosis and suggests that the function of the tumour suppressor gene can be result of an evolution of primitive activities related with the progression of meiosis.

Ignasi Roig | EurekAlert!
Further information:
http://www.uab.es

Further reports about: DNA Protein formation of gametes protein p53 spermatozoids tumour cells

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>