Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Full to the Brim with Hydrogen

29.09.2011
Porous form of magnesium borohydride can store hydrogen

Hydrogen could be one of the most important fuels in a new energy economy based on renewable resources. However, no ideal hydrogen storage material has yet been found. A team led by Yaroslav Filinchuk at the Universit¨¦ Catholique de Louvain, Belgium, and Torben R. Jensen at the University of Aarhus in Denmark has now introduced a new highly porous form of magnesium borohydride in the journal Angewandte Chemie. This material can store hydrogen in two ways: chemically bound and physically adsorbed.


The perfect hydrogen storage material must store hydrogen efficiently and securely in a small volume, and should release it on demand. It must be rapidly refillable under mild conditions, while being as light and inexpensive as possible. One approach to this is solid-state storage. In such systems, hydrogen can be chemically bound, as in borohydride compounds, or it can be adsorbed as a molecule into a nanoporous material, as in some metal¨Corganic frameworks.

The researchers have now found a material that can do both. It is a new, highly porous form of magnesium borohydride¡ªthe first light-metal hydride that is porous like a metal¨Corganic framework and is capable of storing molecular hydrogen.

Magnesium borohydride (Mg(BH4)2) is one of the most promising materials for chemical hydrogen storage because it releases hydrogen at relatively low temperatures and can hold a high proportion by weight (about 15 %) of hydrogen. Two forms of this compound, ¦Á and ¦Â, were previously known. The researchers have now made a third form, designated the ¦Ã form. Its pore volume comprises about 33 % of the structure, and its channels are wide enough to take up and store small gas molecules, such as nitrogen, dichloromethane, and most importantly hydrogen.

Interestingly, under high pressure this material converts into a nested, non-porous framework with a density that is nearly 80 % higher. This makes the ¦Ä form the second densest in hydrogen content and more than twice as dense as liquid hydrogen. Furthermore, this conversion results in a 44 % reduction in volume, which is the largest contraction yet observed for a hydride.

¡°A combination of the chemical (through covalent bonding) and physical (through adsorption in the pores) storage of hydrogen seems to be difficult in practical applications,¡± explains Filinchuk. ¡°However, this research has a broader impact, as it reveals a new class of hydride-based porous solids for storage and separation of various gases.¡±
Author: Yaroslav Filinchuk, Universit¨¦ Catholique de Louvain, Louvain-la-Neuve (Belgium), http://filinchuk.com/
Title: Porous and Dense Magnesium Borohydride Frameworks: Synthesis, Stability, and Reversible Absorption of Guest Species

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201100675

Yaroslav Filinchuk | Angewandte Chemie
Further information:
http://filinchuk.com/
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>