Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fuel from Cellulose

Inexpensive, efficient, and easy: direct formation of furan-based biofuels from cellulose

Independence from fossil fuel exporting nations, a reduction in the release of greenhouse gases, conservation of dwindling resources: there are any number of reasons to stop the use of fossil fuels.

Hydrogen technology and solar energy will very probably provide the solution to our global energy problem—in the long term. For an initial quick remedy we may look to bioenergy. Biomass can be used to generate alternative carbon-based liquid fuels, allowing the continued use of current automotive combustion engine technology and existing infrastructure.

At the same time, the chemical industry would continue to be supplied with the carbon compounds it requires as raw materials for plastics, textiles, etc. Mark Mascal and Edward B. Nikitin at the University of California, Davis (USA) have now developed an interesting new method for the direct conversion of cellulose into furan-based biofuels. As they report in the journal Angewandte Chemie, their simple, inexpensive process delivers furanic compounds in yields never achieved before.

... more about:
»CMF »Cellulose »Mascal

Atmospheric carbon dioxide is viewed as the ultimate carbon source of the future. It is most efficiently “harvested” by plants via photosynthesis. Currently, biofuel producers primarily use starch, which is broken down to form sugars that are then fermented to give ethanol. Cellulose is however the most common form of photosynthetically fixed carbon. The problem is that the degradation of cellulose into its individual sugar components, which could then be fermented, is a slow and expensive process. “Another problem is that the carbon economy of glucose fermentation is poor,” explains Mascal, “for every 10 g of ethanol produced, you also release 9.6 g CO2.”

Could we avoid the breakdown of cellulose and fermentation? Mascal and Nikitin demonstrate that we can indeed. They have developed a simple process for the conversion of cellulose directly into “furanics”, which are furan-based organic liquids. Furans are molecules whose basic unit is an aromatic ring made of one oxygen and four carbon atoms. The main product the researchers obtain under the conditions they have been developing is 5-chloromethylfurfural (CMF).

CMF and ethanol can be combined to give ethoxymethylfufural (EMF), and CMF reacts with hydrogen to give 5-methylfurfural. Both of these compounds are suitable as fuels. EMF has previously been investigated and found to be of interest in mixtures with diesel by Avantium Technologies, a spin-off of Shell.

“Our method appears to be the most efficient conversion of cellulose into simple, hydrophobic, organic compounds described to date,” says Mascal. “It also surpasses the carbon yields of glucose and sucrose fermentation. Furanics could be established as both the automotive energy source and chemical starting material of the future.”

Author: Mark Mascal, University of California, Davis (USA),

Title: Direct, High-Yield Conversion of Cellulose into Biofuel

Angewandte Chemie International Edition, doi: 10.1002/anie.200801594

Mark Mascal | Angewandte Chemie
Further information:

Further reports about: CMF Cellulose Mascal

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>