Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frustrated Pair Captures CO2

02.07.2009
Novel concept for the binding of carbon dioxide without a metal-containing catalyst

Carbon dioxide contributes to the greenhouse effect, but practicable solutions for its capture and storage have not really been found.

However, it might be possible to kill two birds with one stone if carbon dioxide could be used as a raw material. Unlike the carbon sources commonly used today—fossil fuels and natural gas— carbon dioxide is a renewable resource and an environmentally friendly chemical reagent.

Unfortunately, the carbon–oxygen bonds are too strong to be broken easily. Until now, this has mainly been achieved with the use of metal-containing catalysts. A German–Canadian cooperative effort has now developed a new concept that works without metals: as they report in the journal Angewandte Chemie, the team led by Gerhard Erker and Stefan Grimme at the University of Münster and Douglas W. Stephan at the University of Toronto uses so-called frustrated Lewis acid/base pairs to reversibly bind carbon dioxide under mild conditions.

An organic borane and an organic phosphine form a typical Lewis pair: As a Lewis base, the phosphine has too many electrons. The borane on the other hand, a Lewis acid, has an electron deficiency. The Lewis base thus makes its free electron pair available to the Lewis acid. The phosphine and borane form an adduct that is held together by way of the shared electron pair. However, if both partners have bulky side groups, they cannot come together to form the desired bond. They are then described as a “frustrated” Lewis pair.

The researchers exposed a solution of such a frustrated pair to an atmosphere of CO2 under two bars of pressure. This immediately resulted in a reaction, which formed a white solid. What happened? The phosphorus atom in the frustrated phosphine uses its electron pair to bind to the carbon of the CO2, and the boron atom of the frustrated borane snaps up the free electron pair of one of the oxygen atoms of the CO2 and binds to it. In this way, the carbon dioxide couples the two partners together, alleviating their frustration.

With the application of heat or certain solvents, the carbon dioxide can be released and the Lewis pair returned to its original frustrated state. The researchers are now investigating how the captured CO2 could be chemically transformed for use as a feedstock.

Author: Gerhard Erker, Universität Münster (Germany), http://www.uni-muenster.de/Chemie.oc/erker/index.html

Title: Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs

Angewandte Chemie International Edition, doi: 10.1002/anie.200901636

Gerhard Erker | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.uni-muenster.de/Chemie.oc/erker/index.html

Further reports about: Angewandte Chemie CO2 Carbon carbon dioxide carbon source oxygen atom

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>