Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frustrated Pair Captures CO2

02.07.2009
Novel concept for the binding of carbon dioxide without a metal-containing catalyst

Carbon dioxide contributes to the greenhouse effect, but practicable solutions for its capture and storage have not really been found.

However, it might be possible to kill two birds with one stone if carbon dioxide could be used as a raw material. Unlike the carbon sources commonly used today—fossil fuels and natural gas— carbon dioxide is a renewable resource and an environmentally friendly chemical reagent.

Unfortunately, the carbon–oxygen bonds are too strong to be broken easily. Until now, this has mainly been achieved with the use of metal-containing catalysts. A German–Canadian cooperative effort has now developed a new concept that works without metals: as they report in the journal Angewandte Chemie, the team led by Gerhard Erker and Stefan Grimme at the University of Münster and Douglas W. Stephan at the University of Toronto uses so-called frustrated Lewis acid/base pairs to reversibly bind carbon dioxide under mild conditions.

An organic borane and an organic phosphine form a typical Lewis pair: As a Lewis base, the phosphine has too many electrons. The borane on the other hand, a Lewis acid, has an electron deficiency. The Lewis base thus makes its free electron pair available to the Lewis acid. The phosphine and borane form an adduct that is held together by way of the shared electron pair. However, if both partners have bulky side groups, they cannot come together to form the desired bond. They are then described as a “frustrated” Lewis pair.

The researchers exposed a solution of such a frustrated pair to an atmosphere of CO2 under two bars of pressure. This immediately resulted in a reaction, which formed a white solid. What happened? The phosphorus atom in the frustrated phosphine uses its electron pair to bind to the carbon of the CO2, and the boron atom of the frustrated borane snaps up the free electron pair of one of the oxygen atoms of the CO2 and binds to it. In this way, the carbon dioxide couples the two partners together, alleviating their frustration.

With the application of heat or certain solvents, the carbon dioxide can be released and the Lewis pair returned to its original frustrated state. The researchers are now investigating how the captured CO2 could be chemically transformed for use as a feedstock.

Author: Gerhard Erker, Universität Münster (Germany), http://www.uni-muenster.de/Chemie.oc/erker/index.html

Title: Reversible Metal-Free Carbon Dioxide Binding by Frustrated Lewis Pairs

Angewandte Chemie International Edition, doi: 10.1002/anie.200901636

Gerhard Erker | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.uni-muenster.de/Chemie.oc/erker/index.html

Further reports about: Angewandte Chemie CO2 Carbon carbon dioxide carbon source oxygen atom

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>