Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Fruits Ripen and Flowers Die: Scientists Discover How Key Plant Hormone Is Triggered

12.02.2009
Best known for its effects on fruit ripening and flower fading, the gaseous plant hormone ethylene shortens the shelf life of many fruits and plants by putting their physiology on fast-forward.

In recent years, scientists learned a lot about the different components that transmit ethylene signals inside cells. But a central regulator of ethylene responses, a protein known as EIN2, resisted all their efforts.

Finally, after more than a decade of constant probing, a team of researchers led by Joseph Ecker, Ph.D., a professor in the Plant Biology laboratory and director of the Salk Institute Genomic Analysis Laboratory, successfully pinned down the elusive protein. Turns out, the presence of ethylene stabilizes the otherwise ephemeral EIN2 allowing it to gather up enough strength to pass on ethylene’s message.

Their findings, published in the Feb. 15, 2009 edition of the journal Genes and Development, are an important step toward defining EIN2’s role in growth and development and modifying key processes to improve agriculture, preventing crop losses due to ethylene related processes.

“Ethylene is involved in a wide variety of processes and we knew from genetic experiments that EIN2 is right at the center of ethylene signaling pathway, but for the longest time we were unable to figure out how it is regulated,” says Ecker. “Now that we know that EIN2 is negatively regulated by protein degradation, we can begin to understand how it triggers all these different ethylene responses in plants.”

All aspects of a plant’s life are influenced by ethylene: It induces seed germination and the so-called triple response in seedlings, which helps them to push past obstructions. It regulates root hair growth in general and nodulation in nitrogen-fixing legumes. It stimulates fruit ripening, floral fading and abscission, which allows plants to drop fruits, leaves and flowers. But it also protects against pathogens and environmental stress.

While ethylene’s power has been harnessed since the ancient Egyptians discovered that scoring figs hastens the ripening process, it also causes significant losses for florists, markets, suppliers and growers. A single rotting apple’s ethylene production will accelerate the ripening process in nearby apples causing them to spoil as well. Stress during shipping and handling increases ethylene production in cut flowers inducing premature floral fading.

“Ethylene plays a big role in our daily life and ethylene overproduction causes huge economic losses every year,” says first author Hong Qiao, Ph.D., a postdoctoral fellow in Ecker’s lab. “Once we fill in the gaps in our understanding of the ethylene signaling pathway, we can use this knowledge to improve pathogen or drought resistance in plants.”

In the absence of ethylene, a protein called CTR1—short for constitutive triple response 1—shuts down the ethylene pathway through the repression of a protein known as ETHYLENE INSENSITIVE 2 or EIN2. As soon as ethylene binds to its receptors, though, CTR1 looses its paralyzing grip on EIN2 and EIN2 becomes active. But nobody knew how.

Since the activity of the gene, which was isolated in Ecker’s lab in 1995, doesn’t change, Qiao took a closer look at protein levels. It quickly became clear that EIN2 is a short-lived protein that is constantly recycled. When she treated the plants with ethylene, however, EIN2 was no longer degraded and started to accumulate.

Further experiments revealed that two so-called F-box proteins, ETP1 and ETP2 (EIN2 targeting protein 1 and 2), flag EIN2 for degradation when it is not needed for signal transmission. In the presence of ethylene, both F-box proteins are inactivated and EIN2 is no longer sent to the cell’s recycling plant.

“Protein degradation is an emerging theme in plant biology and has been linked to several signaling pathways,” explains Ecker. “This type of regulation is like having your foot on the accelerator and the brake at the same time, then letting up on the brake. It allows cells to respond quickly to incoming information.”

When Qiao inactivated both ETP1 and ETP2 the ethylene signaling pathway was permanently active. When she increased their levels above normal the plants did not respond to the presence of ethylene at all because they couldn’t shake off ETP1 and ETP2. “It really confirmed the central role of EIN2,” say Qiao. “Now we can follow this route and fill in the gaps between EIN2 and downstream components of the pathway.”

Graduate student Katherine N. Chang, and postdoctoral researcher Junshi Yazaki, Ph.D., both in Ecker’s lab also contributed to the study.

The work was funded by the National Science Foundation.

The Salk Institute for Biological Studies in La Jolla, California, is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health, and the training of future generations of researchers. Jonas Salk, M.D., whose polio vaccine all but eradicated the crippling disease poliomyelitis in 1955, opened the Institute in 1965 with a gift of land from the City of San Diego and the financial support of the March of Dimes.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>