Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Fly Model Organism: How a Developmental Gene Influences Sperm Formation

21.02.2014
Heidelberg researchers study basic regulatory mechanisms of stem cell differentiation

Heidelberg researchers have been delving into the basic regulatory mechanisms of stem cell differentiation. Using the Drosophila melanogaster fruit fly as a model organism, the team led by Prof. Dr. Ingrid Lohmann at Heidelberg University's Centre for Organismal Studies was able to show how a special developmental gene from the Hox family influences germline stem cells. These cells are responsible for sperm formation.


Confocal image of a Drosophila testis that shows the localisation of the Abd-B Hox protein (green). Abd-B is essential for the positioning and function of the stem cell niche.

Ingrid Lohmann, COS, Heidelberg University

The scientists, working in the “Maintenance and Differentiation of Stem Cells in Development and Disease” Collaborative Research Centre (CRC 873), found that impairment of Hox gene function resulted in prematurely aged sperms.

As “immature” somatic cells, stem cells can mature into different types of cells, thus making them responsible for the development of all the tissues and organs in the body. They are also able to repair damaged adult cells. “Advancements in medical research have shown that stem cells can be used to treat certain diseases.

To fulfil the promise of stem cell therapy, it is important to discover the function of the respective stem cells and understand how they interact with their environment, that is, the surrounding cells and tissues,” explains Prof. Lohmann, who heads the Developmental Biology research group at the Centre for Organismal Studies (COS).

This microenvironment, which stabilises and regulates stem cell activity, is called a stem cell niche. The Heidelberg research team investigated the niches in the testis of the fruit fly. The germline stem cells there produce daughter cells that develop into mature sperms. “In our studies, we wanted to find out the nature, if any, of the relationship between germline stem cells and the gene Abd-B,” states Prof. Lohmann, who further explains that Abd-B belongs to a family of developmental genes referred to as Hox genes. These Hox genes control the activity of a multitude of other genes that are responsible for the early development of an organism.

According to the team’s research, the Abd-B gene is critical to niche function in the Drosophila testis. If Abd-B is mutated, the niche – and the stem cells located there – lose their position in the testis. This damages their function, which in turn causes the germline stem cells to divide incorrectly. In the fruit flies studied, this caused the formation of prematurely aged sperm. “Our new knowledge of the function of Abd-B helps us to better understand how these processes are regulated in higher organisms, including vertebrates,” explains Ingrid Lohmann.

In CRC 873, funded by the German Research Foundation, medical and biological scientists investigate the basic regulatory mechanisms that control the self-renewal and differentiation of stem cells. Different model organisms like the fruit fly Drosophila melanogaster are used for their research, aimed at decoding the principles of stem cell control with the aim to also apply them to higher forms of life and eventually humans. The research results of Prof. Lohmann and her team were published in the journal “Developmental Cell”.

Original publication:
F. Papagiannouli, L. Schardt, J. Grajcarek, N. Ha, I. Lohmann: The Hox Gene Abd-B Controls Stem Cell Niche Function in the Drosophila Testis. Developmental Cell, Vol 28. Iss 2, 189-202 (27 January 2014), doi: 10.1016/j.devcel.2013.12.016
Internet information:
Research group of Ingrid Lohmann:
http://www.cos.uni-heidelberg.de/index.php/i.lohmann?l=_e
Collaborative Research Centre:
http://www.klinikum.uni-heidelberg.de/Sonderforschungsbereich.116852.0.html
Contact:
Prof. Dr. Ingrid Lohmann
Centre for Organismal Studies
Phone: +49 6221 54-51312
ingrid.lohmann@bioquant.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>