Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fruit Fly Model Organism: How a Developmental Gene Influences Sperm Formation

Heidelberg researchers study basic regulatory mechanisms of stem cell differentiation

Heidelberg researchers have been delving into the basic regulatory mechanisms of stem cell differentiation. Using the Drosophila melanogaster fruit fly as a model organism, the team led by Prof. Dr. Ingrid Lohmann at Heidelberg University's Centre for Organismal Studies was able to show how a special developmental gene from the Hox family influences germline stem cells. These cells are responsible for sperm formation.

Confocal image of a Drosophila testis that shows the localisation of the Abd-B Hox protein (green). Abd-B is essential for the positioning and function of the stem cell niche.

Ingrid Lohmann, COS, Heidelberg University

The scientists, working in the “Maintenance and Differentiation of Stem Cells in Development and Disease” Collaborative Research Centre (CRC 873), found that impairment of Hox gene function resulted in prematurely aged sperms.

As “immature” somatic cells, stem cells can mature into different types of cells, thus making them responsible for the development of all the tissues and organs in the body. They are also able to repair damaged adult cells. “Advancements in medical research have shown that stem cells can be used to treat certain diseases.

To fulfil the promise of stem cell therapy, it is important to discover the function of the respective stem cells and understand how they interact with their environment, that is, the surrounding cells and tissues,” explains Prof. Lohmann, who heads the Developmental Biology research group at the Centre for Organismal Studies (COS).

This microenvironment, which stabilises and regulates stem cell activity, is called a stem cell niche. The Heidelberg research team investigated the niches in the testis of the fruit fly. The germline stem cells there produce daughter cells that develop into mature sperms. “In our studies, we wanted to find out the nature, if any, of the relationship between germline stem cells and the gene Abd-B,” states Prof. Lohmann, who further explains that Abd-B belongs to a family of developmental genes referred to as Hox genes. These Hox genes control the activity of a multitude of other genes that are responsible for the early development of an organism.

According to the team’s research, the Abd-B gene is critical to niche function in the Drosophila testis. If Abd-B is mutated, the niche – and the stem cells located there – lose their position in the testis. This damages their function, which in turn causes the germline stem cells to divide incorrectly. In the fruit flies studied, this caused the formation of prematurely aged sperm. “Our new knowledge of the function of Abd-B helps us to better understand how these processes are regulated in higher organisms, including vertebrates,” explains Ingrid Lohmann.

In CRC 873, funded by the German Research Foundation, medical and biological scientists investigate the basic regulatory mechanisms that control the self-renewal and differentiation of stem cells. Different model organisms like the fruit fly Drosophila melanogaster are used for their research, aimed at decoding the principles of stem cell control with the aim to also apply them to higher forms of life and eventually humans. The research results of Prof. Lohmann and her team were published in the journal “Developmental Cell”.

Original publication:
F. Papagiannouli, L. Schardt, J. Grajcarek, N. Ha, I. Lohmann: The Hox Gene Abd-B Controls Stem Cell Niche Function in the Drosophila Testis. Developmental Cell, Vol 28. Iss 2, 189-202 (27 January 2014), doi: 10.1016/j.devcel.2013.12.016
Internet information:
Research group of Ingrid Lohmann:
Collaborative Research Centre:
Prof. Dr. Ingrid Lohmann
Centre for Organismal Studies
Phone: +49 6221 54-51312
Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>