Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fruit fly model of epilepsy reveals mechanisms behind fever-induced seizures

18.10.2012
UCI, Brown work advances quest for novel treatments for inherited disorder
UC Irvine and Brown University researchers have created a new fruit fly model of inherited epilepsy that’s providing insights into the mechanisms underlying temperature-dependent seizures while establishing a platform from which to develop therapies for these disorders.

In the Oct. 10 issue of The Journal of Neuroscience, Diane O’Dowd of UCI, Robert Reenan of Brown and colleagues report their method for placing a gene mutation that causes human fever-induced seizures into drosophila fruit flies. As a result, the mutant flies experience heat-induced seizures.

This represents the first time a human genetic disease mutation has been “knocked in” to the equivalent location in the fruit fly genome. The drosophila knock-in model provides a rapid and low-cost basis for defining the neural mechanisms contributing to inherited seizure disorders.

“We can also use this genetic model of human epilepsy in fruit flies to look for new treatments for the disease,” said O’Dowd, professor and chair of developmental & cell biology at UCI.

Fever-induced, or febrile, seizures are most commonly seen in children. Only about one in 100 children with febrile seizures develops epilepsy, and most outgrow them by age 5. In contrast, individuals who have the inherited disorder — termed GEFS+ — have febrile seizures that persist beyond childhood and also often develop seizures in the absence of fever.

Reenan, a biology professor at Brown, and Brown undergraduate Jeff Gilligan used a genetic-exchange research method called “homologous recombination” to insert a mutation into the gene in fruit flies that’s a direct parallel of the GEFS+ mutation in the human SCN1A sodium channel gene that causes febrile seizures in people.

When placed in tubes that were put in warm water, most of the mutant fruit flies began to experience seizures within 20 to 30 seconds. They would fall over, and their wings would flap and their legs twitch for about two minutes while the flies were kept at a high temperature. The researchers found that seizure susceptibility was dose-dependent: Ninety-five percent of the flies with two copies of the mutant gene had seizures, as opposed to 60 percent of those with just one copy. Unaltered control flies did not have temperature-dependent seizures.

To determine the neurological causes of the seizures, O’Dowd, her postdoctoral fellow and lead study author Lei Sun, and UCI colleagues examined neurons in the brains of both mutant and control flies to monitor activity and see how they behaved as the brains were heated. In the mutant flies, they discovered flaws in the functioning of sodium channels.

“What happens is the mutant channels don’t open and close properly,” O’Dowd said. “This effect is amplified at high temperature, and this changes the ability of neurons to generate the appropriate electrical signals, leading to hyperactivity in the brain circuits.”

“With this knowledge, the next step is to use this model to look for drugs that might reduce or eliminate heat-induced seizures,” she added.

In addition to providing insight into the neurology of febrile seizures, the study establishes a new fruit fly model as a viable genetic platform for the study of epilepsy and validates the use of homologous recombination in flies to explore mechanisms underlying other genetically linked diseases.

Ryan Schutte and Vivian Nguyen of UCI and Cynthia Staber of Brown also contributed to the study, which was funded by the National Institutes of Health, Howard Hughes Medical Institute and the Ellison Medical Foundation.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Media Contact

Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>