Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fruit fly model of epilepsy reveals mechanisms behind fever-induced seizures

18.10.2012
UCI, Brown work advances quest for novel treatments for inherited disorder
UC Irvine and Brown University researchers have created a new fruit fly model of inherited epilepsy that’s providing insights into the mechanisms underlying temperature-dependent seizures while establishing a platform from which to develop therapies for these disorders.

In the Oct. 10 issue of The Journal of Neuroscience, Diane O’Dowd of UCI, Robert Reenan of Brown and colleagues report their method for placing a gene mutation that causes human fever-induced seizures into drosophila fruit flies. As a result, the mutant flies experience heat-induced seizures.

This represents the first time a human genetic disease mutation has been “knocked in” to the equivalent location in the fruit fly genome. The drosophila knock-in model provides a rapid and low-cost basis for defining the neural mechanisms contributing to inherited seizure disorders.

“We can also use this genetic model of human epilepsy in fruit flies to look for new treatments for the disease,” said O’Dowd, professor and chair of developmental & cell biology at UCI.

Fever-induced, or febrile, seizures are most commonly seen in children. Only about one in 100 children with febrile seizures develops epilepsy, and most outgrow them by age 5. In contrast, individuals who have the inherited disorder — termed GEFS+ — have febrile seizures that persist beyond childhood and also often develop seizures in the absence of fever.

Reenan, a biology professor at Brown, and Brown undergraduate Jeff Gilligan used a genetic-exchange research method called “homologous recombination” to insert a mutation into the gene in fruit flies that’s a direct parallel of the GEFS+ mutation in the human SCN1A sodium channel gene that causes febrile seizures in people.

When placed in tubes that were put in warm water, most of the mutant fruit flies began to experience seizures within 20 to 30 seconds. They would fall over, and their wings would flap and their legs twitch for about two minutes while the flies were kept at a high temperature. The researchers found that seizure susceptibility was dose-dependent: Ninety-five percent of the flies with two copies of the mutant gene had seizures, as opposed to 60 percent of those with just one copy. Unaltered control flies did not have temperature-dependent seizures.

To determine the neurological causes of the seizures, O’Dowd, her postdoctoral fellow and lead study author Lei Sun, and UCI colleagues examined neurons in the brains of both mutant and control flies to monitor activity and see how they behaved as the brains were heated. In the mutant flies, they discovered flaws in the functioning of sodium channels.

“What happens is the mutant channels don’t open and close properly,” O’Dowd said. “This effect is amplified at high temperature, and this changes the ability of neurons to generate the appropriate electrical signals, leading to hyperactivity in the brain circuits.”

“With this knowledge, the next step is to use this model to look for drugs that might reduce or eliminate heat-induced seizures,” she added.

In addition to providing insight into the neurology of febrile seizures, the study establishes a new fruit fly model as a viable genetic platform for the study of epilepsy and validates the use of homologous recombination in flies to explore mechanisms underlying other genetically linked diseases.

Ryan Schutte and Vivian Nguyen of UCI and Cynthia Staber of Brown also contributed to the study, which was funded by the National Institutes of Health, Howard Hughes Medical Institute and the Ellison Medical Foundation.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Media Contact

Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>