Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New fruit fly model of epilepsy reveals mechanisms behind fever-induced seizures

18.10.2012
UCI, Brown work advances quest for novel treatments for inherited disorder
UC Irvine and Brown University researchers have created a new fruit fly model of inherited epilepsy that’s providing insights into the mechanisms underlying temperature-dependent seizures while establishing a platform from which to develop therapies for these disorders.

In the Oct. 10 issue of The Journal of Neuroscience, Diane O’Dowd of UCI, Robert Reenan of Brown and colleagues report their method for placing a gene mutation that causes human fever-induced seizures into drosophila fruit flies. As a result, the mutant flies experience heat-induced seizures.

This represents the first time a human genetic disease mutation has been “knocked in” to the equivalent location in the fruit fly genome. The drosophila knock-in model provides a rapid and low-cost basis for defining the neural mechanisms contributing to inherited seizure disorders.

“We can also use this genetic model of human epilepsy in fruit flies to look for new treatments for the disease,” said O’Dowd, professor and chair of developmental & cell biology at UCI.

Fever-induced, or febrile, seizures are most commonly seen in children. Only about one in 100 children with febrile seizures develops epilepsy, and most outgrow them by age 5. In contrast, individuals who have the inherited disorder — termed GEFS+ — have febrile seizures that persist beyond childhood and also often develop seizures in the absence of fever.

Reenan, a biology professor at Brown, and Brown undergraduate Jeff Gilligan used a genetic-exchange research method called “homologous recombination” to insert a mutation into the gene in fruit flies that’s a direct parallel of the GEFS+ mutation in the human SCN1A sodium channel gene that causes febrile seizures in people.

When placed in tubes that were put in warm water, most of the mutant fruit flies began to experience seizures within 20 to 30 seconds. They would fall over, and their wings would flap and their legs twitch for about two minutes while the flies were kept at a high temperature. The researchers found that seizure susceptibility was dose-dependent: Ninety-five percent of the flies with two copies of the mutant gene had seizures, as opposed to 60 percent of those with just one copy. Unaltered control flies did not have temperature-dependent seizures.

To determine the neurological causes of the seizures, O’Dowd, her postdoctoral fellow and lead study author Lei Sun, and UCI colleagues examined neurons in the brains of both mutant and control flies to monitor activity and see how they behaved as the brains were heated. In the mutant flies, they discovered flaws in the functioning of sodium channels.

“What happens is the mutant channels don’t open and close properly,” O’Dowd said. “This effect is amplified at high temperature, and this changes the ability of neurons to generate the appropriate electrical signals, leading to hyperactivity in the brain circuits.”

“With this knowledge, the next step is to use this model to look for drugs that might reduce or eliminate heat-induced seizures,” she added.

In addition to providing insight into the neurology of febrile seizures, the study establishes a new fruit fly model as a viable genetic platform for the study of epilepsy and validates the use of homologous recombination in flies to explore mechanisms underlying other genetically linked diseases.

Ryan Schutte and Vivian Nguyen of UCI and Cynthia Staber of Brown also contributed to the study, which was funded by the National Institutes of Health, Howard Hughes Medical Institute and the Ellison Medical Foundation.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Media Contact

Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>