Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly's 'sweet tooth' short-lived: U of British Columbia research

17.10.2012
The humble fruit fly may have something to teach us about forgoing empty calories for more nutritional ones – especially when we're hungry.

While the flies initially prefer food with a sweet flavour, they quickly learn to opt for less sweet food sources that offer more calories and nutritional value, according to new research by University of British Columbia zoologists.

The findings, published this week in the Journal of Neuroscience, are the first to measure the shift in food preference over time, and the first to find that flies opt for nutritious food more quickly when they're hungry.

NB: A high resolution, close up photo of a fruit fly feeding on a strawberry is available at: http://science.ubc.ca/fly_strawberry_Mike_Gordon_UBC.jpg.

"The taste system is important for quick – often life and death – decisions about what to eat," says Michael Gordon, a UBC neurobiologist and senior author on the paper. "Typically the initial taste of sugar indicates a good source of carbohydrates, but longer-term feeding preferences integrate past experiences and learning. It appears that nutritional content is an important part of that."

"From a behavioural standpoint, it seems that mammals and flies can show similar responses to calorie sensing," adds Gordon, an assistant professor with the Department of Zoology. "But mechanistically we're still only beginning to understand how either senses the caloric value of food independently of taste after eating it."

The researchers allowed fruit flies (Drosophila melanogaster) to choose between sources of liquid sugar that varied in their ratios of sweetness to caloric value. In some instances it took the populations of flies as little as four hours to shift their preference towards more nutritious food sources – typically based on sugars like sucrose, maltose and D-glucose.

Researchers also isolated several molecular pathways in a strain of flies that appear to affect taste and feeding preference and found that blocking insulin signaling increased preference for nutritious sugars.

BACKGROUND | Fruit flies opt for nutrition

Research Method

In addition to observing food preferences, the UBC research team also used mutant strains of fruit flies to isolate several molecular pathways that appear to affect taste and feeding preference. They found that developing a preference for caloric sugars depends on the cAMP pathway, which plays a wide array of roles in the nervous system but is best known for affecting learning and memory.

The researchers also found that blocking insulin signaling in a strain of flies increased their preference for nutritious sugars. Insulin plays important metabolic roles in both flies and mammals and is known to be regulated by feeding. The regulating of feeding behaviour by insulin signaling has also been demonstrated in mammals.

Funding Partners

The research was supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

Photo Caption

Photo: Fruit fly (Drosophila melanogaster) feeding on a strawberry. Credit: Michael Gordon, the University of British Columbia.

Chris Balma | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>