Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit fly's 'sweet tooth' short-lived: U of British Columbia research

17.10.2012
The humble fruit fly may have something to teach us about forgoing empty calories for more nutritional ones – especially when we're hungry.

While the flies initially prefer food with a sweet flavour, they quickly learn to opt for less sweet food sources that offer more calories and nutritional value, according to new research by University of British Columbia zoologists.

The findings, published this week in the Journal of Neuroscience, are the first to measure the shift in food preference over time, and the first to find that flies opt for nutritious food more quickly when they're hungry.

NB: A high resolution, close up photo of a fruit fly feeding on a strawberry is available at: http://science.ubc.ca/fly_strawberry_Mike_Gordon_UBC.jpg.

"The taste system is important for quick – often life and death – decisions about what to eat," says Michael Gordon, a UBC neurobiologist and senior author on the paper. "Typically the initial taste of sugar indicates a good source of carbohydrates, but longer-term feeding preferences integrate past experiences and learning. It appears that nutritional content is an important part of that."

"From a behavioural standpoint, it seems that mammals and flies can show similar responses to calorie sensing," adds Gordon, an assistant professor with the Department of Zoology. "But mechanistically we're still only beginning to understand how either senses the caloric value of food independently of taste after eating it."

The researchers allowed fruit flies (Drosophila melanogaster) to choose between sources of liquid sugar that varied in their ratios of sweetness to caloric value. In some instances it took the populations of flies as little as four hours to shift their preference towards more nutritious food sources – typically based on sugars like sucrose, maltose and D-glucose.

Researchers also isolated several molecular pathways in a strain of flies that appear to affect taste and feeding preference and found that blocking insulin signaling increased preference for nutritious sugars.

BACKGROUND | Fruit flies opt for nutrition

Research Method

In addition to observing food preferences, the UBC research team also used mutant strains of fruit flies to isolate several molecular pathways that appear to affect taste and feeding preference. They found that developing a preference for caloric sugars depends on the cAMP pathway, which plays a wide array of roles in the nervous system but is best known for affecting learning and memory.

The researchers also found that blocking insulin signaling in a strain of flies increased their preference for nutritious sugars. Insulin plays important metabolic roles in both flies and mammals and is known to be regulated by feeding. The regulating of feeding behaviour by insulin signaling has also been demonstrated in mammals.

Funding Partners

The research was supported by the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

Photo Caption

Photo: Fruit fly (Drosophila melanogaster) feeding on a strawberry. Credit: Michael Gordon, the University of British Columbia.

Chris Balma | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>