Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Flies Watch the Sky to Stay on Course

20.01.2012
Insects, equipped with complex compound eyes, can maintain a constant heading in their travels, some of them for thousands of miles. New research demonstrates that fruit flies keep their bearings by using the polarization pattern of natural skylight, bolstering the belief that many, if not all, insects have that capability.

“If you go out in a field, lie on your back and look up at the sky, that’s pretty much what an insect sees,” said Michael Dickinson, a University of Washington biology professor. “Insects have been looking up at this view forever.”

Dickinson is the senior author of a paper providing details on the findings, published Jan. 10 in the journal Current Biology. The lead author is Peter Weir, a doctoral student at the California Institute of Technology.

The researchers noted that insects such as monarch butterflies and locusts maintain a constant heading while migrating thousands of miles across continents, while bees and ants hunting for food successfully find their way hundreds of feet back to the nest without a problem. That has led scientists to believe that the animals must possess a compass of sorts.

To assess how insects orient themselves, Weir and Dickinson examined the behavior of Drosophila melanogaster, a species commonly referred to as a fruit fly, in outdoor lighting conditions in a specially designed “arena” atop a building tall enough to be higher than treetops and other visual landmarks.

The researchers used a light-cured glue to attach the insects to a metal pin, which was then placed within a magnetic field that allowed the flies to move and rotate naturally but held them in place. Digital cameras tracked flight headings.

During the hour before and the hour after sunset, the headings of flies relative to the position of the arena were recorded for 12 minutes. The arena was rotated 90 degrees every three minutes, and when natural light was not altered by optical filters some of the flies compensated for the rotations and maintained a consistent heading.

When the arena was covered with a circularly polarizing filter, eliminating natural linear polarization light patterns, the flies did not shift their heading significantly in response to arena rotations.

The results indicate Drosophila has the ability to coordinate eye and brain functions for rudimentary navigation using light polarization patterns, the researchers concluded. The flies are able to hold a straighter course under normal polarization patterns than they can when those patterns are shifted.

The next step in the research is to try to determine why the flies select a particular heading.

“It’s been very hard to study these processes because animals such as butterflies and locusts used in previous studies are not standard lab models,” Dickinson said. “We know something about the processes, but not that much.”

Demonstrating that fruit flies can navigate using cues from natural skylight makes it easier to use genetics research to better understand the complex capability and exactly how it is implemented in the brain.

For millennia, seafarers have depended on the sun to know their position in the world, but often the sun is not visible. Polarization vision solves that problem, Dickinson said, because if there’s even a small patch of clear sky in a fruit fly’s very broad range of view then the natural light patterns can provide location information.

He noted that fruit flies “achieve remarkable functionality” with limited resources in their brains. There are 300,000 neurons in a fruit fly’s brain, and it would take 300,000 fruit flies to reach the equivalent number of neurons in the human brain.

“A lot of our research is focusing on how the fruit fly brain is multitasking in space and time to achieve remarkable effects,” Dickinson said.

The research is funded by the National Science Foundation and the National Institutes of Health.

For more information, contact Dickinson at 206-221-1928, 206-221-8087 (lab) or flyman@uw.edu; or Weir at weir@caltech.edu.

High-resolution images are available.

The paper is available at http://www.cell.com/current-biology/abstract/S0960-9822(11)01305-4.

Video: http://youtu.be/f1zP6cmiC6Y
Caption: A fruit fly (Drosophila melanogaster) executes a “body saccade,” or a quick turn, in an arena similar to the one used in a polarization study by Michael Dickinson of the University of Washington and Peter Weir of the California Institute of Technology. (Credit: John Bender)

Vince Stricherz | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>