Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fruit Flies Watch the Sky to Stay on Course

Insects, equipped with complex compound eyes, can maintain a constant heading in their travels, some of them for thousands of miles. New research demonstrates that fruit flies keep their bearings by using the polarization pattern of natural skylight, bolstering the belief that many, if not all, insects have that capability.

“If you go out in a field, lie on your back and look up at the sky, that’s pretty much what an insect sees,” said Michael Dickinson, a University of Washington biology professor. “Insects have been looking up at this view forever.”

Dickinson is the senior author of a paper providing details on the findings, published Jan. 10 in the journal Current Biology. The lead author is Peter Weir, a doctoral student at the California Institute of Technology.

The researchers noted that insects such as monarch butterflies and locusts maintain a constant heading while migrating thousands of miles across continents, while bees and ants hunting for food successfully find their way hundreds of feet back to the nest without a problem. That has led scientists to believe that the animals must possess a compass of sorts.

To assess how insects orient themselves, Weir and Dickinson examined the behavior of Drosophila melanogaster, a species commonly referred to as a fruit fly, in outdoor lighting conditions in a specially designed “arena” atop a building tall enough to be higher than treetops and other visual landmarks.

The researchers used a light-cured glue to attach the insects to a metal pin, which was then placed within a magnetic field that allowed the flies to move and rotate naturally but held them in place. Digital cameras tracked flight headings.

During the hour before and the hour after sunset, the headings of flies relative to the position of the arena were recorded for 12 minutes. The arena was rotated 90 degrees every three minutes, and when natural light was not altered by optical filters some of the flies compensated for the rotations and maintained a consistent heading.

When the arena was covered with a circularly polarizing filter, eliminating natural linear polarization light patterns, the flies did not shift their heading significantly in response to arena rotations.

The results indicate Drosophila has the ability to coordinate eye and brain functions for rudimentary navigation using light polarization patterns, the researchers concluded. The flies are able to hold a straighter course under normal polarization patterns than they can when those patterns are shifted.

The next step in the research is to try to determine why the flies select a particular heading.

“It’s been very hard to study these processes because animals such as butterflies and locusts used in previous studies are not standard lab models,” Dickinson said. “We know something about the processes, but not that much.”

Demonstrating that fruit flies can navigate using cues from natural skylight makes it easier to use genetics research to better understand the complex capability and exactly how it is implemented in the brain.

For millennia, seafarers have depended on the sun to know their position in the world, but often the sun is not visible. Polarization vision solves that problem, Dickinson said, because if there’s even a small patch of clear sky in a fruit fly’s very broad range of view then the natural light patterns can provide location information.

He noted that fruit flies “achieve remarkable functionality” with limited resources in their brains. There are 300,000 neurons in a fruit fly’s brain, and it would take 300,000 fruit flies to reach the equivalent number of neurons in the human brain.

“A lot of our research is focusing on how the fruit fly brain is multitasking in space and time to achieve remarkable effects,” Dickinson said.

The research is funded by the National Science Foundation and the National Institutes of Health.

For more information, contact Dickinson at 206-221-1928, 206-221-8087 (lab) or; or Weir at

High-resolution images are available.

The paper is available at

Caption: A fruit fly (Drosophila melanogaster) executes a “body saccade,” or a quick turn, in an arena similar to the one used in a polarization study by Michael Dickinson of the University of Washington and Peter Weir of the California Institute of Technology. (Credit: John Bender)

Vince Stricherz | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>