Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies and test tubes open new window on Alzheimer's disease

16.03.2010
A team of scientists from SLU in Uppsala and University of Cambridge have discovered a molecule that can prevent a toxic protein involved Alzheimer's disease from building up in the brain.

They found that in test tube studies the molecule not only prevents the protein from forming clumps but can also reverse this process. Then, using fruit flies with Alzheimer's disease, they showed that the same molecule effectively "cures" the insects of the disease.

Alzheimer's disease is the most common neurodegenerative disorder linked to protein misfolding and aggregation, or clumping. Previous studies in animal models have shown that clumping of a protein known as the Alzheimer beta (A-beta) peptide causes memory impairment and cognitive deficits similar to those in patients with Alzheimer's disease. When these clumps of protein are deposited in the brain they damage neurones (brain cells), although the mechanism involved is still not understood.

The new molecule - designed by scientists in Sweden - is a small protein known as an Affibody (an engineered binding protein). In this new study, researchers at the University of Cambridge and the Swedish University of Agricultural Sciences found that in test-tube experiments this protein binds to the A-beta peptide, preventing it from forming clumps and breaking up any clumps already present.

In a second experiment, they studied the effect of this Affibody in a Drosophila (fruit fly) model of Alzheimer's disease previously developed at Cambridge. Working with fruit flies that develop the fly equivalent of Alzhiemer's because they have been genetically engineered to produce the Abeta protein, they crossed these flies with a second line of flies genetically engineered to produce the Affibody.

They found that offspring - despite producing the A-beta protein - did not develop Alzhiemer's.

"Flies are our first 'biological test bench'for this new type of medicine. We wanted to know if it was at all possible to prevent the effects of the A-beta protein in the brain of a living organism", says Professor Torleif Härd, SLU.

"But the results are positive and we think we now how this molecule can be further developed to function as a medicine, although it is not possible to say how long this will take, or if it is possible to treat patients who have already developed the disease. The next step will be performing tests on mice."

The research will continue in collaboration with KTH and the biotech enterprise Affibody AB, Stockholm. The study is published in PLoS Biology.

More information:Professor Torleif Härd, SLU; torleif.hard@molbio.slu.se, +46-18 471 40 55

Pressofficer Carin Wrange: +46-70 247 84 22; Carin.Wrange@adm.slu.se

Carin Wrange | idw
Further information:
http://www.slu.se
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1000334

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>