Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Flies Reveal Mechanism Behind ALS-Like Disease

14.06.2012
Studying how nerve cells send and receive messages, Johns Hopkins scientists have discovered new ways that genetic mutations can disrupt functions in neurons and lead to neurodegenerative disease, including amyotrophic lateral sclerosis (ALS).

In a report published April 26 in Neuron, the research team says it has discovered that a mutation responsible for a rare, hereditary motor neuron disease called hereditary motor neuropathy 7B (HMN7B) disrupts the link between molecular motors and the nerve cell tip where they reside.

This mutation results in the production of a faulty protein that prevents material from being transported from the cell’s edge, which is located at the muscle and extends back toward its “body” in the central nervous system. In pinpointing how and where this cargo transport is disrupted, the scientists are now closer to understanding mechanisms underlying this condition and ALS.

“An important question we need to answer is how defects in proteins that normally perform important cellular functions for neurons lead to disease,” says Alex Kolodkin, Ph.D., a Howard Hughes Medical Institute Investigator and professor of neuroscience at the Johns Hopkins University School of Medicine. “A major issue in understanding neurodegenerative diseases is determining how certain proteins that are expressed in all types of neurons, or even in all cells in the body, can lead to devastating effects in one, or a few, subsets of neurons.” Kolodkin notes that many neurodegenerative diseases involve proteins that serve general functions required in nearly every type of cell in the body, including the transport of material between different parts of a cell, yet certain alterations in these proteins can result in specific neurological disorders.

One particular protein, p150glued, is known to play a role in at least two of these disorders, HMN7B, which is similar to ALS, and Perry syndrome, which leads to symptoms similar to Parkinson’s disease. p150glued is part of a larger complex of proteins that forms a molecular “motor” capable of transporting various molecules and other “cargo” from the nerve end toward the cell body. To better understand how mutations in p150glued lead to HMN7B and Perry syndrome, the researchers turned to fruit flies, which are easy to genetically manipulate and where the same protein has been well studied.

They engineered the fruit fly p150glued protein to contain the same mutations as those implicated in the two diseases and used microscopy techniques that enable them to follow in live cells the movement of fluorescently tagged cargo along motor neurons.

They found, surprisingly, that the movement of cargo along the length of the cell was normal. However, at the far end of the cell, they found that the HMN7B-associated mutation caused an unusually large accumulation of cargo. “This was an unexpected finding,” says Thomas Lloyd, M.D., Ph.D., an assistant professor in neurology and neuroscience at the Johns Hopkins School of Medicine. “We need to better understand how this is causing disease.”

Using flies engineered to contain mutations in other motor proteins, and again watching cargo transport in live cells, the team found that p150glued works in concert with another motor to control cargo transport. Their results suggest that when p150glued is compromised, this control is lost and cargo accumulates at the nerve end, leading to disease.

“It’s still unclear how these two different mutations in different regions of the same protein cause very distinct neurodegenerative diseases,” Lloyd says. Encouraged by their results, the team plans to continue using fruit flies to unravel the molecular mechanisms underlying these diseases.

In addition to Lloyd and Kolodkin, other investigators participating in this research include James Machamer, Kathleen O’Hara, Ji Han Kim, Sarah Collins, Brooke Sahin, and Yunpeng Yang, Johns Hopkins; Man Y. Wong and Edwin Levitan, University of Pittsburgh; and Wendy Imlach and Brian McCabe, Columbia University Medical Center.

The research was funded by the Packard Center for ALS Research at Johns Hopkins, the National Institute of Neurological Disorders and Stroke (K08-NS062890, RO1-NS32385, and R01-NS35165) and the Howard Hughes Medical Institute.

On the Web:
http://neuroscience.jhu.edu/
http://www.cell.com/neuron/home
Media Contacts:
Audrey Huang; 410-614-5105; audrey@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>