Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fruit Flies Reveal Mechanism Behind ALS-Like Disease

Studying how nerve cells send and receive messages, Johns Hopkins scientists have discovered new ways that genetic mutations can disrupt functions in neurons and lead to neurodegenerative disease, including amyotrophic lateral sclerosis (ALS).

In a report published April 26 in Neuron, the research team says it has discovered that a mutation responsible for a rare, hereditary motor neuron disease called hereditary motor neuropathy 7B (HMN7B) disrupts the link between molecular motors and the nerve cell tip where they reside.

This mutation results in the production of a faulty protein that prevents material from being transported from the cell’s edge, which is located at the muscle and extends back toward its “body” in the central nervous system. In pinpointing how and where this cargo transport is disrupted, the scientists are now closer to understanding mechanisms underlying this condition and ALS.

“An important question we need to answer is how defects in proteins that normally perform important cellular functions for neurons lead to disease,” says Alex Kolodkin, Ph.D., a Howard Hughes Medical Institute Investigator and professor of neuroscience at the Johns Hopkins University School of Medicine. “A major issue in understanding neurodegenerative diseases is determining how certain proteins that are expressed in all types of neurons, or even in all cells in the body, can lead to devastating effects in one, or a few, subsets of neurons.” Kolodkin notes that many neurodegenerative diseases involve proteins that serve general functions required in nearly every type of cell in the body, including the transport of material between different parts of a cell, yet certain alterations in these proteins can result in specific neurological disorders.

One particular protein, p150glued, is known to play a role in at least two of these disorders, HMN7B, which is similar to ALS, and Perry syndrome, which leads to symptoms similar to Parkinson’s disease. p150glued is part of a larger complex of proteins that forms a molecular “motor” capable of transporting various molecules and other “cargo” from the nerve end toward the cell body. To better understand how mutations in p150glued lead to HMN7B and Perry syndrome, the researchers turned to fruit flies, which are easy to genetically manipulate and where the same protein has been well studied.

They engineered the fruit fly p150glued protein to contain the same mutations as those implicated in the two diseases and used microscopy techniques that enable them to follow in live cells the movement of fluorescently tagged cargo along motor neurons.

They found, surprisingly, that the movement of cargo along the length of the cell was normal. However, at the far end of the cell, they found that the HMN7B-associated mutation caused an unusually large accumulation of cargo. “This was an unexpected finding,” says Thomas Lloyd, M.D., Ph.D., an assistant professor in neurology and neuroscience at the Johns Hopkins School of Medicine. “We need to better understand how this is causing disease.”

Using flies engineered to contain mutations in other motor proteins, and again watching cargo transport in live cells, the team found that p150glued works in concert with another motor to control cargo transport. Their results suggest that when p150glued is compromised, this control is lost and cargo accumulates at the nerve end, leading to disease.

“It’s still unclear how these two different mutations in different regions of the same protein cause very distinct neurodegenerative diseases,” Lloyd says. Encouraged by their results, the team plans to continue using fruit flies to unravel the molecular mechanisms underlying these diseases.

In addition to Lloyd and Kolodkin, other investigators participating in this research include James Machamer, Kathleen O’Hara, Ji Han Kim, Sarah Collins, Brooke Sahin, and Yunpeng Yang, Johns Hopkins; Man Y. Wong and Edwin Levitan, University of Pittsburgh; and Wendy Imlach and Brian McCabe, Columbia University Medical Center.

The research was funded by the Packard Center for ALS Research at Johns Hopkins, the National Institute of Neurological Disorders and Stroke (K08-NS062890, RO1-NS32385, and R01-NS35165) and the Howard Hughes Medical Institute.

On the Web:
Media Contacts:
Audrey Huang; 410-614-5105;
Vanessa McMains; 410-502-9410;

Audrey Huang | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>