Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit flies drawn to the sweet smell of youth

09.02.2012
Aging takes its toll on sex appeal and now an international team of researchers led by Baylor College of Medicine and the University of Michigan find that in fruit flies, at least, it even diminishes the come-hither effect of the chemicals of love – pheromones.

"This is new because we have direct evidence that the pheromones produced at these different ages affect sexual attractiveness differently," said Tsung-Han Kuo, a graduate student in the department of molecular and human genetics and the Huffington Center on Aging at BCM. Kuo is first author of the report that appears online in the Journal of Experimental Biology.

Pheromones are chemicals produced by an organism to communicate or attract another. In this case, Drosophila melanogaster or fruit flies produce chemicals called cuticular hydrocarbons. Special mass spectrometry studies that looked in detail at the composition and level of production of these hydrocarbons showed that they differed between the sexes, but more important, they changed with age.

"In fact, cuticular hydrocarbon production may be an indicator of the insect's health and fertility," said Kuo. Reproduction is one of the major activities of the short-lived insects, and they enhance the possibility of passing on their genes through the production of these pheromones. Unfortunately, the alluring effect of the chemicals wanes with age.

"The results were remarkably consistent across different strains of flies," said Dr. Scott Pletcher, now of the University of Michigan, and Kuo's initial mentor at BCM.

Kuo, Pletcher and Dr. Herman A. Dierick, assistant professor of molecular and human genetics at BCM, then determined how the pheromones produced at different ages affected the attractiveness of the fruit flies.

Using a specially designed holding cell, Kuo introduced a male fly into a chamber that contained two females – a young fly and an old fly. Video of the encounter showed that the male was much more attracted to the young fly.

To eliminate physical appearance from the equation, he then conducted the experiment in the dark. The males still courted the young females more vigorously. When the scientists washed the pheromones off the females' bodies, the males could no longer tell a difference between young and old.

"In the last analysis, we took the pheromone from the young and old flies and put it on flies that do not produce pheromones," said Kuo. "The flies were identical in every way but the males still preferred the flies with the 'younger' pheromone."

"We know that aging is conserved across species," said Pletcher. "We want to examine the exciting possibility that the mechanisms underlying attractiveness are also conserved across species."

Others who took part in this work include Joanne Y. Yew of the National University of Singapore, who analyzed the pheromone, Tatyana Y. Fedina of the University of Michigan and Klaus Dreisewerd of the University of Münster.

Funding for this work came from the National Institutes of Health; the Glenn Foundation; the American Federation for Aging Research; the Ellison Medical Foundation; the Alexander von Humboldt Foundation; the Singapore National Research Foundation; the National Institute of General Medical Sciences; the Drosophila Aging Core of the Nathan Shock Center of Excellence in the Biology of Aging funded by the National Institute on Aging and the National Science Foundation.

For more information on basic science research at Baylor College of Medicine, please go to www.bcm.edu/fromthelab

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>