Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit Flies - A Model for Bodybuilders

11.03.2010
The human body operates by a precisely regulated interplay of different cell types such as blood, nerve and muscle cells.

Together with colleagues from the Research Institute of Molecular Pathology (IMP) in Vienna, Austria, scientists of the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now succeeded in identifying all genes of the fruit fly Drosophila that play a role in the development and function of muscles. "It is fascinating how the genetic programme of an organism is able to produce such different cell types out of identical precursor cells," says Frank Schnorrer, group leader at the MPI of Biochemistry. The work has now been published in Nature.


A genetic program is responsible for the development of different muscle cells in the fruit fly. Picture: Frank Schnorrer / Copyright: MPI of Biochemistry

The human body consists of ten to hundred trillion cells. And not all the cells are identical: The human body consists of 200 different cell and tissue types. Each one of these cell types experiences a special genetic program during its development. At the end of such a development red blood cells transport oxygen, nerve cells pulse signals and muscle cells generate mechanical force.

In cooperation with Barry Dickson's Lab at the Research Institute of Molecular Pathology (IMP) in Vienna, Max Planck scientists of the research group "Muscle Dynamics", headed by Frank Schnorrer, have now systematically analyzed all 12,000 genes of the fruit fly for their role in muscle development and function. Like humans, fruit flies have different types of muscles: some let larvae crawl slowly, others let the wings of adult flies flap as quickly as a flash.

By performing more than 25,000 flight tests, the scientists identified about 2,000 genes that have a function in fly muscles. "Some genes are needed in all the muscles," explains Frank Schnorrer, "others only in the very fast and strong flight muscles." The flight muscles of flies belong to the strongest muscles in the animal kingdom. "They are able to produce 100 watt per kilogram muscle mass and that over a long period of time," says the biochemist. "Bodybuilders and Tour de France riders can only dream about such a performance. They steadily manage about 30 watt per kilogram muscle mass."

Many of the identified genes exist in humans as well and are supposedly also needed for normal human muscle function. A change in these genes often leads to muscle diseases. For instance, mutations in the Laminin genes are responsible for a particular form of degenerative muscle disease, muscular dystrophy. "In the future, insight into such connections may help to detect and treat muscle diseases individually," hopes Frank Schnorrer.

Original Publication:
F. Schnorrer, C. Schönbauer, C. C. H. Langer, G. Dietzl, M. Novatchkova, K. Schernhuber, M. Fellner, A. Azaryan, M. Radolf, A. Stark, K. Keleman and B. J. Dickson: Systematic genetic analysis of muscle morphogenesis and function in Drosophila. Nature, March 11, 2010
Contact:
Dr. Frank Schnorrer
Muscle Dynamics
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
schnorrer@biochem.mpg.de
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de
www.biochem.mpg.de
Dr. Heidemarie Hurtl
Communications
Research Institute of Molecular Pathology
Dr. Bohr Gasse 7
A-1030 Wien
Tel. ++43 1 79730 3625
hurtl@imp.ac.at

Anja Konschak | Max-Planck-Institut
Further information:
http://www.biochem.mpg.de/en/news/index.html
http://www.biochem.mpg.de/en/rg/schnorrer/index.html

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>