Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From worm muscle to spinal discs - An evolutionary surprise

12.09.2014

Thoughts of the family tree may not be uppermost in the mind of a person suffering from a slipped disc, but those spinal discs provide a window into our evolutionary past. They are remnants of the first vertebrate skeleton, whose origins now appear to be older than had been assumed.

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found that, unexpectedly, this skeleton most likely evolved from a muscle. The study, carried out in collaboration with researchers at the Howard Hughes Medical Institute in Janelia Farm, USA, is published today in Science.


The marine worm Platynereis has a muscle (red) which develops in the same place and has the same genetic signature as the notochord (blue) that develops into our spinal discs. Credit: Kalliopi Monoyios

Humans are part of a group of animals called chordates, whose defining feature is a rod of cartilage that runs lengthwise along the middle of their body, under their spinal chord. This structure, called the notochord, was the first vertebrate skeleton. 

It is present in human embryos, and is replaced with the backbone as we develop, with the cartilage reduced to those tell-tale discs. Since starfish, sea urchins and related animals have no such structure, scientists assumed the notochord had emerged in a relatively recent ancestor, after our branch of the evolutionary tree split away from the ‘starfish branch’.

“People simply haven’t been looking beyond our direct relatives, but that means you could be fooled, if the structure appeared earlier and that single group lost it,” says Detlev Arendt from EMBL, who led the study. “And in fact, when we looked at a broader range of animals, this is what we found.”

Antonella Lauri and Thibaut Brunet, both in Arendt’s lab, identified the genetic signature of the notochord – the combination of genes that have to be turned on for a healthy notochord to form. When they found that the larva of the marine worm Platynereis dumerilii has a group of cells with that same genetic signature, the scientists teamed up with Philipp Keller’s group at Janelia Farm to use state-of-the-art microscopy to follow those cells as the larva developed.

They found that the cells form a muscle that runs along the animal’s midline, precisely where the notochord would be if the worm were a chordate. The researchers named this muscle the axochord, as it runs along the animal’s axis. A combination of experimental work and combing through the scientific literature revealed that most of the animal groups that sit between Platynereis and chordates on the evolutionary tree also have a similar, muscle-based structure in the same position.

The scientists reason that such a structure probably first emerged in an ancient ancestor, before all these different animal groups branched out on their separate evolutionary paths. Such a scenario would also explain why the lancelet amphioxus, a ‘primitive’ chordate, has a notochord with both cartilage and muscle. Rather than having acquired the muscle independently, amphioxus could be a living record of the transition from muscle-based midline to cartilaginous notochord.

The shift from muscle to cartilage could have come about because a stiffened central rod would make swimming more efficient, the scientists postulate. 

Published online in Science on 12 September 2014. DOI: 10.1126/science.1253396.
For images, video and more information please visit: www.embl.org/press/2014/140911_Heidelberg

Policy regarding use

EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.

Sonia Furtado Neves | EMBL Research News

Further reports about: Biology EMBL Farm Laboratory Molecular amphioxus ancestor animals branch cartilage larva spinal starfish

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>