Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From the scent of roses to nylon and plastics

20.04.2016

Enzyme for plastics production from renewable raw materials

Beguiling scents, sober facts: scents emanating from plants are almost always monoterpenes and monoterpene alcohols, the essential oils of plants are natural hydrocarbon compounds. For instant, geraniol is the tempting fragrant alcohol of roses.


Crystals of linalool dehydratase/isomerase in a drop of protein solution

Sina Weidenweber, Max Planck-Institute of Biophysics, Frankfurt


Structure of linalool dehydratase/isomerase. Five identical proteins form a five-membered rosette. In black, the substrates bound on the enzyme are shown.

Sina Weidenweber and Ulrich Ermler, Max Planck-Institute of Biophysics, Frankfurt

Researchers of the Max Planck Institute for Marine Microbiology in Bremen have published in 2010 the discovery of an enzyme, which converts the rose-scented geraniol in the coriander-scented coriandrol ((S) -linalool) and further in the hop-scented myrcene.

However, this enzyme, the linalool dehydratase/isomerase is also capable of forning butadiene from natural raw materials, such as fermentation products. Butadiene is a key compound in the manufacturing process of plastics. Now, the researchers were able to elucidate the exact three-dimensional structure of the enzyme and the binding sites of geraniol and myrcene on the enzyme, an important milestone on the way from the petrochemical industry towards the energy-economic use of natural resources.

Butadiene and isoprene: important intermediates in plastics production

Butadiene and isoprene are intermediates for nylon production, high-melting plastics (ABS polymers) and rubber products. So far butadiene is produced elaborately by cracking of petroleum. Therefore, the chemical industry has a great interest in energy-economic alternatives to butadiene synthesis.
Over 10 million tons of butadiene and isoprene are annually produced under considerable energy consumption from fossil fuels, a market of over 15 billion euros.

A few years ago, high oil prices and increasing demand triggered an intensive search for alternative production methods. The switch to renewable raw materials and an energy-poor production method requires biocatalysts, and the catalytic properties of linalool dehydratase/isomerase are ideal for this task. Based on the discovery of the enzyme by Bremer researchers in 2010, a considerable number of patent applications and patents have been published that describe the use of this enzyme in the production of butadiene and isoprene.

Discovery of the substrate binding on the enzyme

To make effective use of the enzyme in the industry, you have to know the internal architecture and how and where the actual reaction takes place. Now Sina Weiden Weber and Ulrich Ermler from the Max Planck-Institute of Biophysics in Frankfurt and Robert Marmulla and Jens Harder from the Max Planck-Institute for Marine Microbiology in Bremen succeeded in the elucidation of the molecular structure of the enzyme. The enzyme is composed of five identical subunits and has a unique binding site for monoterpene alcohols.

"In recent years it was very gratifying to see the rapid use of our results from basic research in applied industrial research. The linalool dehydratase/isomerase structure, the precise knowledge of geraniol and myrcene-binding sites and the insight into the catalytic mechanisms will now enable industrial companies to optimize this actually monoterpenes degrading enzyme for the biotechnological production of butadiene and isoprene. "says Jens Harder.

Original publication:
Weidenweber, Sina; Marmulla, Robert; Ermler, Ulrich; Harder, Jens
X-ray structure of linalool dehydratase/isomerase from Castellaniella defragrans reveals enzymatic alkene synthesis.
FEBS Letters 2016, doi 10.1002/1873-3468.12165

Contact:
Prof. Dr. Jens Harder
Max Planck-Institute for Marine Microbiology, Bremen
Telefon: 0421 2028 750
E-Mail: jharder@mpi-bremen.de

PD Dr. Ulrich Ermler
Max Planck-Institute of Biophysics, Frankfurt
Telephon: 069 6303 1054
E-mail: ulrich.ermler@biophys.mpg.de

or the press office:
Max Planck-Institute for Marine Microbiology:
Dr. Manfred Schlösser
Telefon: 0421 2028 - 704
Fax: 0421 2028 - 790
E-Mail: presse@mpi-bremen.de
Dr. Fanni Aspetsberger
Telefon: 0421 2028 - 947
E-Mail: presse@mpi-bremen.de

Dr. Manfred Schloesser | Max-Planck-Institut für marine Mikrobiologie
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>