Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Termite Fumigant to Molecular Coupling

01.09.2014

Sulfur fluoride exchange—a powerful new reaction for click chemistry

The coupling of molecular building blocks nearly as easy as “snapping” them together can be realized by means of the “click chemistry” tool kit. American scientists have now introduced another achievement for the click concept in the journal Angewandte Chemie: the sulfur fluoride exchange reaction (SuFEx) can be used to form robust inorganic bridges between carbon centers and opens up a fully unexplored area of chemistry with countless new molecules that could form the basis for new drugs, diagnostics, plastics, “intelligent” materials, and many other products.

Developed in the 1990s by Nobel Laureate K. Barry Sharpless and his colleagues, the concept of click chemistry is aimed at synthesizing target molecules rapidly and precisely from smaller units. The reactions must be specific, broadly applicable, and environmentally friendly while delivering high yields.

They must also be based on inexpensive, widely available reagents that react under mild and uncomplicated conditions. Since the discovery of the azide–alkyne cycloaddition reaction in 2002 by the Sharpless team, the click concept has become established as a universal chemical technique.

A team led by Sharpless at The Scripps Research Institute in La Jolla (CA, USA) has now developed another groundbreaking click reaction: sulfur fluoride exchange (SuFEx). This reaction exploits the very special reactivity of sulfur fluorides and makes it possible for chemists to bind together molecules of their choice.

Like most click reactions, the process itself is an old one that has been improved to allow the previously underestimated sulfate bond to be used as a universally applicable connector for linking a variety of molecular building blocks.

The starting material is a common, commercially available chemical called sulfuryl fluoride (SO2F2) that is widely used as a fumigant against termites and other pests. It was previously considered generally inert—incorrectly, as Sharpless and his co-workers have found. The team was able to make this chemical reactive in a reliable and predictable way.

In the SuFEx reaction, the fluoride ion must be extracted from a bond with a hexavalent sulfur atom. This is not so easy, so the SO2—F unit is remarkably stable in typical acidic or basic environments. This bond thus fulfills a central requirement of click chemistry: it remains “invisible” under most conditions, coming to life only on demand.

A broad palette of potential applications could benefit from this reaction. The teams of Sharpless and V. V. Fokin developed an efficient, nearly quantitative synthesis of high-molecular-weight polysulfate polymers that should be easy to implement on an industrial scale. Linked by sulfate groups, these polymers are sulfur-containing analogues of polycarbonates and represent a new class of plastics potentially superior to present-day materials.

One particular advantage is that unlike polycarbonates, which can react with water to give off bisphenol A—a substance that has hormonelike properties and poses problems for both health and the environment—polysulfates are resistant to hydrolysis and thus cannot release monomers.

This is just one application for the SuFEx reactions; many other reactions with other building blocks are possible. An advantage for the biological sciences is that sulfate links do not occur in any life forms and the new SuFEx reaction does not interfere with biological processes.

About the Author

K. Barry Sharpless, W. M. Keck Professor at The Scripps Research Institute and its Skaggs Institute for Chemical Biology, pursues and develops useful new chemical connectivity. Click chemistry was conceived by him in the mid-1990s as a method for rapidly discovering, and improving existing, useful reactivity. Now his group has found its 2nd 'perfect' click reaction. In 2001 he shared the Nobel Prize in Chemistry for his work on asymmetric catalysis.

Author: K. Barry Sharpless, The Scripps Research Institute, La Jolla (USA), http://www.scripps.edu/sharpless

Title: Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry

Angewandte Chemie International Edition 2014, 53, No. 35, 9430–9448, Permalink to the article: http://dx.doi.org/10.1002/anie.201309399

K. Barry Sharpless | Angewandte Chemie

Further reports about: Coupling Fumigant Molecular blocks conditions materials reactions reactivity sulfate sulfur

More articles from Life Sciences:

nachricht Pathogenic bacteria hitchhiking to North and Baltic Seas?
22.07.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unconventional quasiparticles predicted in conventional crystals
22.07.2016 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>