Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From Termite Fumigant to Molecular Coupling


Sulfur fluoride exchange—a powerful new reaction for click chemistry

The coupling of molecular building blocks nearly as easy as “snapping” them together can be realized by means of the “click chemistry” tool kit. American scientists have now introduced another achievement for the click concept in the journal Angewandte Chemie: the sulfur fluoride exchange reaction (SuFEx) can be used to form robust inorganic bridges between carbon centers and opens up a fully unexplored area of chemistry with countless new molecules that could form the basis for new drugs, diagnostics, plastics, “intelligent” materials, and many other products.

Developed in the 1990s by Nobel Laureate K. Barry Sharpless and his colleagues, the concept of click chemistry is aimed at synthesizing target molecules rapidly and precisely from smaller units. The reactions must be specific, broadly applicable, and environmentally friendly while delivering high yields.

They must also be based on inexpensive, widely available reagents that react under mild and uncomplicated conditions. Since the discovery of the azide–alkyne cycloaddition reaction in 2002 by the Sharpless team, the click concept has become established as a universal chemical technique.

A team led by Sharpless at The Scripps Research Institute in La Jolla (CA, USA) has now developed another groundbreaking click reaction: sulfur fluoride exchange (SuFEx). This reaction exploits the very special reactivity of sulfur fluorides and makes it possible for chemists to bind together molecules of their choice.

Like most click reactions, the process itself is an old one that has been improved to allow the previously underestimated sulfate bond to be used as a universally applicable connector for linking a variety of molecular building blocks.

The starting material is a common, commercially available chemical called sulfuryl fluoride (SO2F2) that is widely used as a fumigant against termites and other pests. It was previously considered generally inert—incorrectly, as Sharpless and his co-workers have found. The team was able to make this chemical reactive in a reliable and predictable way.

In the SuFEx reaction, the fluoride ion must be extracted from a bond with a hexavalent sulfur atom. This is not so easy, so the SO2—F unit is remarkably stable in typical acidic or basic environments. This bond thus fulfills a central requirement of click chemistry: it remains “invisible” under most conditions, coming to life only on demand.

A broad palette of potential applications could benefit from this reaction. The teams of Sharpless and V. V. Fokin developed an efficient, nearly quantitative synthesis of high-molecular-weight polysulfate polymers that should be easy to implement on an industrial scale. Linked by sulfate groups, these polymers are sulfur-containing analogues of polycarbonates and represent a new class of plastics potentially superior to present-day materials.

One particular advantage is that unlike polycarbonates, which can react with water to give off bisphenol A—a substance that has hormonelike properties and poses problems for both health and the environment—polysulfates are resistant to hydrolysis and thus cannot release monomers.

This is just one application for the SuFEx reactions; many other reactions with other building blocks are possible. An advantage for the biological sciences is that sulfate links do not occur in any life forms and the new SuFEx reaction does not interfere with biological processes.

About the Author

K. Barry Sharpless, W. M. Keck Professor at The Scripps Research Institute and its Skaggs Institute for Chemical Biology, pursues and develops useful new chemical connectivity. Click chemistry was conceived by him in the mid-1990s as a method for rapidly discovering, and improving existing, useful reactivity. Now his group has found its 2nd 'perfect' click reaction. In 2001 he shared the Nobel Prize in Chemistry for his work on asymmetric catalysis.

Author: K. Barry Sharpless, The Scripps Research Institute, La Jolla (USA),

Title: Sulfur(VI) Fluoride Exchange (SuFEx): Another Good Reaction for Click Chemistry

Angewandte Chemie International Edition 2014, 53, No. 35, 9430–9448, Permalink to the article:

K. Barry Sharpless | Angewandte Chemie

Further reports about: Coupling Fumigant Molecular blocks conditions materials reactions reactivity sulfate sulfur

More articles from Life Sciences:

nachricht High-arctic butterflies shrink with rising temperatures
07.10.2015 | Aarhus University

nachricht Long-term contraception in a single shot
07.10.2015 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

NASA provides an infrared look at Hurricane Joaquin over time

08.10.2015 | Earth Sciences

Theoretical computer science provides answers to data privacy problem

08.10.2015 | Information Technology

Stellar desk in wave-like motion

08.10.2015 | Physics and Astronomy

More VideoLinks >>>