Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From single cells to multicellular life

06.11.2014

Max Planck researchers capture the emergence of multicellular life in real-time experiments

All multicellular creatures are descended from single-celled organisms. The leap from unicellularity to multicellularity is possible only if the originally independent cells collaborate. So-called cheating cells that exploit the cooperation of others are considered a major obstacle.


Diversity among nascent multicellular collectives: In such dishes containing various strains of Pseudomonas fluorescens scientists have observed in real time the evolution of simple self-reproducing groups of cells from previously individual cells.

© Gayle Ferguson

Scientists at the Max Planck Institute for Evolutionary Biology in Plön, Germany, together with researchers from New Zealand and the USA, have observed in real time the evolution of simple self-reproducing groups of cells from previously individual cells.

The nascent organisms are comprised of a single tissue dedicated to acquiring oxygen, but this tissue also generates cells that are the seeds of future generations: a reproductive division of labour. Intriguingly, the cells that serve as a germ line were derived from cheating cells whose destructive effects were tamed by integration into a life cycle that allowed groups to reproduce.

The life cycle turned out to be a spectacular gift to evolution. Rather than working directly on cells, evolution was able to work on a developmental programme that eventually merged cells into a single organism. When this happened groups began to prosper with the once free-living cells coming to work for the good of the whole.

Single bacterial cells of Pseudomonas fluorescens usually live independently of each other. However, some mutations allow cells to produce adhesive glues that cause cells to remain stuck together after cell division. Under appropriate ecological conditions, the cellular assemblies can be favoured by natural selection, despite a cost to individual cells that produce the glues. When Pseudomonas fluorescens is grown in unshaken test tubes the cellular collectives prosper because they form mats at the surface of liquids where the cells gain access to oxygen that is otherwise – in the liquid – unavailable.

Given both costs associated with production of adhesive substances and benefits that accrue to the collective, natural selection is expected to favour types that no longer produce costly glues, but take advantage of the mat to support their own rapid growth. Such types are often referred to as cheats because they take advantage of the community effort while paying none of the costs. Cheats arise in the authors’ experimental populations and bring about collapse of the mats. The mats fail when cheats prosper: cheats obtain an abundance of oxygen, but contribute no glue to keep the mat from disintegrating – the mats eventually break and fall to the bottom where they are starved of oxygen.

Paul Rainey, who led the study at the New Zealand Institute for Advanced Study and the Max Planck Institute for Evolutionary Biology, explains: “Simple cooperating groups – like the mats that interest us – stand as one possible origin of multicellular life, but no sooner do the mats arise, than they fail: the same process that ensures their success – natural selection – , ensures their demise.” But even more problematic is that groups, once extant, must have some means of reproducing themselves, else they are of little evolutionary consequence.

Pondering this problem led Rainey to an ingenious solution. What if cheats could act as seeds – a germ line – for the next set of mats: while cheats destroy the mats, what about the possibility that they might also stand as their saviour? “It’s just a matter of perspective”, argues Rainey. The idea is beautifully simple, but counter-intuitive. Nonetheless, it offers potential solutions to profound problems such as the origins of reproduction, the soma / germ distinction – even the origin of development itself.

In their experiments the researchers compared how two different life cycles affected group (mat) evolution. In the first, the mats were allowed to reproduce via a two-phase life cycle in which mats gave rise to mat offspring via cheater cells that functioned as a kind of germ line. In the second, cheats were purged and mats reproduced by fragmentation. “The viability of the resulting bacterial mats, that is, their biological fitness, improved under both scenarios, provided we allowed mats to compete with each other,” explains Katrin Hammerschmidt of the New Zealand Institute for Advanced Study.

Surprisingly however, the researchers found that when cheats were part of the life cycle, the fitness of cellular collectives decoupled from that of the individual cells: that is, the most fit mats consisted of cells with relatively low individual fitness. “The selfish interests of individual cells in these collectives appear to have been conquered by natural selection working at the level of mats: individual cells ended up working for the common good. The resulting mats were thus more than a casual association of multiple cells. Instead, they developed into a new kind of biological entity – a multicellular organism whose fitness can no longer be explained by the fitness of the individual cells that comprise the collective” says Rainey.

“Life cycles consisting of two phases are surprisingly similar to the life cycles of most multicellular organisms that we know today. It is even possible that germ-line cells, i.e. egg and sperm cells, may have emerged during the course of evolution from such selfish cheating cells,” says Rainey.


Contact

Prof. Dr. Paul Rainey
Max Planck Institute for Evolutionary Biology, Plön

Email: rainey@evolbio.mpg.de


Original publication
Katrin Hammerschmidt, Caroline Rose, Ben Kerr and Paul B. Rainey

Life cycles, fitness decoupling and the evolution of multicellularity

Nature, 6 November 2014; 515, 75-79 (doi:10.1038/nature13884)

Prof. Dr. Paul Rainey | Max-Planck-Institute

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>