Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Nose to Knee: Engineered Cartilage Regenerates Joints

28.08.2014

Human articular cartilage defects can be treated with nasal septum cells. Researchers at the University and the University Hospital of Basel report that cells taken from the nasal septum are able to adapt to the environment of the knee joint and can thus repair articular cartilage defects.

The nasal cartilage cells' ability to self-renew and adapt to the joint environment is associated with the expression of so-called HOX genes. The scientific journal Science Translational Medicine has published the research results together with the report of the first treated patients.


Articular cartilage replaced: MRI of defect tissue site before (left) and four months after (right) transplantation.

Fig: Department of Biomedicine, University of Basel

Cartilage lesions in joints often appear in older people as a result of degenerative processes. However, they also regularly affect younger people after injuries and accidents. Such defects are difficult to repair and often require complicated surgery and long rehabilitation times.

A new treatment option has now been presented by a research team lead by Prof. Ivan Martin, professor for tissue engineering, and Prof. Marcel Jakob, Head of Traumatology, from the Department of Biomedicine at the University and the University Hospital of Basel: Nasal cartilage cells can replace cartilage cells in joints.

Cartilage cells from the nasal septum (nasal chondrocytes) have a distinct capacity to generate a new cartilage tissue after their expansion in culture. In an ongoing clinical study, the researchers have so far taken small biopsies (6 millimeters in diameter) from the nasal septum from seven out of 25 patients below the age of 55 years and then isolated the cartilage cells.

They cultured and multiplied the cells and then applied them to a scaffold in order to engineer a cartilage graft the size of 30 x 40 millimeters. A few weeks later they removed the damaged cartilage tissue of the patients' knees and replaced it with the engineered and tailored tissue from the nose. In a previous clinical study conducted in cooperation with plastic surgeons and using the same method, the researchers from Basel recently already successfully reconstructed nasal wings affected by tumors.

Surprising Adaption

The scientists around first author Dr. Karoliina Pelttari were especially surprised by the fact that in the animal model with goats, the implanted nasal cartilage cells were compatible with the knee joint profile; even though, the two cell types have different origins.

During the embryonic development, nasal septum cells develop from the neuroectodermal germ layer, which also forms the nervous system; their self-renewal capacity is attributed to their lack of expression of some homeobox (HOX) genes. In contrast, these HOX genes are expressed in articular cartilage cells that are formed in the mesodermal germ layer of the embryo.

“The findings from the basic research and the preclinical studies on the properties of nasal cartilage cells and the resulting engineered transplants have opened up the possibility to investigate an innovative clinical treatment of cartilage damage”, says Prof. Ivan Martin about the results.

It has already previously been shown that the human nasal cells' capacity to grow and form new cartilage is conserved with age. Meaning, that also older people could benefit from this new method, as well as patients with large cartilage defects. While the primary target of the ongoing clinical study at the University Hospital of Basel is to confirm the safety and feasibility of cartilage grafts engineered from nasal cells when transplanted into joint, the clinical effectiveness assessed until now is highly promising.

Original source
Karoliina Pelttari, Benjamin Pippenger, Marcus Mumme, Sandra Feliciano, Celeste Scotti, Pierre Mainil-Varlet, Alfredo Procino, Brigitte von Rechenberg, Thomas Schwamborn, Marcel Jakob, Clemente Cillo, Andrea Barbero, Ivan Martin
Adult human neural crest-derived cells for articular cartilage repair
Science Translational Medicine, 6, 251ra120 (2014) | doi: 10.1126/scitranslmed.3009688

Further information
Prof. Dr. Ivan Martin, Department of Biomedicine at the University and the University Hospital of Basel, phone: +41 (0)61 265 23 84, email: ivan.martin@unibas.ch

Weitere Informationen:

http://stm.sciencemag.org/content/6/251/251ra119 - Abstract

Christoph Dieffenbacher | Universität Basel

More articles from Life Sciences:

nachricht Killer sea snail a target for new drugs
07.07.2015 | University of Queensland

nachricht First images of dolphin brain circuitry hint at how they sense sound
07.07.2015 | Emory Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Surfing a wake of light

Researchers observe and control light wakes for the first time

When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake in its path. Wakes occur whenever something is traveling...

Im Focus: Light-induced Magnetic Waves in Materials Engineered at the Atomic Scale

Researchers explore ultrafast control of magnetism across interfaces: A new study discovers how the sudden excitation of lattice vibrations in a crystal can trigger a change of the magnetic properties of an atomically-thin layer that lies on its surface.

A research team, led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg, the University of Oxford, and the...

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Down to the quantum dot

07.07.2015 | Physics and Astronomy

Tundra study uncovers impact of climate warming in the Arctic

07.07.2015 | Earth Sciences

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover

07.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>