Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From leaf to root - messenger RNAs are long-distance travellers


Using bioinformatic data analyses an international team of scientists could discover thousands of mobile messenger RNAs.

Plants take up water and salts from the soil and they produce sugars via photosynthesis. These nutrients need to be transported to growing tissues adjacent to their uptake or synthesis. This task is assumed by the vascular bundles, which consist of two tissues: xylem and phloem. Water and dissolved salts are transported from root to shoot by the xylem.

Heterografts of the Arabidopsis ecotypes Columbia and Pedriza were used to analyze mobile mRNAs. White arrows indicate grafting sites.

© Max Planck Institute of Molecular Plant Physiology

The phloem facilitates transport sugars and other organic compounds from nutrient exporting tissues (sources) to importing tissues (sinks). Besides small molecules, proteins and siRNAs (small interfering RNAs) are transported in the phloem as well.

“Small interfering RNAs take part in gene regulation. They are able to migrate long distances, e.g. from leaves to flowers where they can regulate the production of pollen or phosphate uptake in the root”, explains Friedrich Kragler of the Max Planck Institute of Molecular Plant Physiology in Potsdam. Moreover there were hints on phloem transport of larger RNA molecules like messenger RNAs (mRNAs). They convey genetic information from DNA to protein synthesis.

“Only a small number of mRNAs that were found in the phloem have been analyzed further. In addition it was unknown to what extent mRNAs are transported between distant tissues”, says Friedrich Kragler. On this account the international team of scientists investigated the mobility of mRNAs in the model plant Arabidopsis thaliana (thale cress). First they needed to develop a method which enables distinction of mobile and immobile mRNAs. Migration of mRNA from shoot to root and vice versa could be analyzed in heterografted plants.

“Due to their genetic variety, we chose to use different Arabidopsis ecotypes for our grafting experiments”, says Wolf-Rüdiger Scheible of the Samuel Robert Noble Foundation in Ardmore, Oklahoma. Ecotypes are genetically distinct populations within one species that are adapted to different ecosystems. The scientists decided to use two out of over 750 Arabidopsis subspecies: Columbia (Col-0) from Missouri and Pedriza (Ped-0) from Spain. They harbor substantially diverged genetic information. So, mRNAs can be easily assigned to one of those ecotypes.

Seedlings were used for root-shoot heterografting in various combinations. Two weeks after grafting, DNA and RNA of leaves and roots were isolated und subjected to sequencing. “By analyzing the obtained sequence data we could identify 2006 genes that produce mobile mRNAs”, explains Friedrich Kragler, “although the true number actually might be even higher as our approach could not interrogate all mRNAs that are produced in these Arabidopsis ecotypes” adds Wolf-Rüdiger Scheible.

The majority of detected mobile mRNAs migrates in the phloem, matching the sugar transport. The other half splits in molecules that migrate from root to shoot (25%) and those that are transported in both directions (24%). The scientist assume that plants use mobile mRNAs as signal molecules to coordinate growth processes as well as adaptation to environmental stresses in distant tissues.

Grafting is commonly used in viticulture and fruit cultivation to combine characteristic traits of two varieties. Nevertheless, the underlying genetic determinants are often unknown. “Knowing the identity of mobile mRNAs that move from roots into flowers will help us to understand why certain graft combinations e.g. used widely by plant breeders with grapevines, tomatoes, or with apple trees are beneficial or detrimental for fruit production”, says Friedrich Kragler.



Dr. Friedrich Kragler
Max Planck Institute for Molecular Plant Physiology
Phone: +49 331 567-8120

Dr. Kathleen Dahncke
Press and public relations
Max Planck Institute for Molecular Plant Physiology
Phone: +49 331 567-8275

Original publication:
Christoph J. Thieme, Monica Rojas-Triana, Ewelina Stecyk, Christian Schudoma, Wenna Zhang, Lei Yang, Miguel Miñambres, Dirk Walther, Waltraud X. Schulze, Javier Paz-Ares, Wolf-Rüdiger Scheible and Friedrich Kragler
Endogenous Arabidopsis messenger RNAs transported to distant tissues
Nature Plants, 23 March 2015, DOI: 10.1038/nplants.2015.25

Weitere Informationen: Link to Friedrich Kraglers group

Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>