Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From bacteria to birds: tropical plantations disrupt biodiversity

29.08.2017

Scientists from Göttingen University investigate effects of land conversion in South-East Asia

A research team at the University of Göttingen has conducted a large-scale study in Indonesia to understand how the conversion of rainforest to rubber and oil palm plantations alters biodiversity of these ecosystems.


A recently established smallholder oil-palm plantation in the Jambi region of Sumatra, Indonesia.

Photo: Andrew Barnes


Researchers collecting invertebrates from the leaf litter on one of the research plots in a rubber plantation.

Photo: Andrew Barnes

The researchers found that land-use change directly reduces the number of different species as well as the number of individual plants and animals, especially at the highest trophic levels, and that interactions among different organisms control how the whole ecosystem responds to land use. The study was published in Nature Ecology and Evolution.

Tropical rainforests are under threat from the human demand for natural products like vegetable oils and rubber, which are found in food and common household products around the world. The demand is driving the conversion of tropical biodiversity hotspots to agricultural plantations, and over the past two decades, deforestation rates in South-East Asia have rapidly increased.

This has profound consequences for biodiversity, affecting, for example, plants, insects and birds. These different organisms constantly interact with each other, especially through trophic interactions, like when insects eat plants or birds eat insects. Because of these interactions, when one group of organisms is affected by deforestation, this may have negative consequences for another group as well. Ultimately, trophic interactions can determine how whole ecosystems respond to disturbances.

The Göttingen researchers investigated the direct and cascading effects of land-use change in Sumatra by collecting data from a range of organisms, among them plants, bacteria, invertebrates and birds. Their research plots were located in rainforest, areas of rubber trees mixed with forest tree species (“jungle rubber”) and monoculture rubber and oil palm plantations.

The researchers found that species diversity was as much as 65 percent lower on the study plots in monoculture plantations compared to rainforest plots. This was due to direct effects like higher mortality of insects due to the use of toxic pesticides in plantations, and also to indirect effects which occur through the disruption of organisms at lower trophic levels that serve as resources for organisms higher in the food chain. For example, they found reduced species diversity of invertebrates that eat leaf litter (such as millipedes and cockroaches) in plantations, which then impacted the predators that rely on these invertebrates for food, like spiders.

“Essentially, we found that responses of ecosystems to land-use change are highly complex when we look at many taxonomic groups simultaneously,” explains lead author Dr. Andrew D. Barnes. Dr. Kara Allen, the other lead author, points out: “Our results provide important insight into how whole ecosystems react to human disturbances. However, they also suggest that we still have much to learn about how high-diversity systems operate.”

The study also revealed other interesting trends: It has often been shown that larger-bodied species at higher trophic levels, such as predatory birds or tigers, tend to be the first to go extinct when natural ecosystems are disturbed by humans. The researchers were able to confirm this theory – the highest trophic levels were indeed the most strongly affected because of the combination of their reliance on organisms at the lower trophic levels for food, along with the simultaneous direct impacts of land-use change.

“By pointing to groups that will have the most impact on ecosystem-level conservation, these sorts of insights should help to better inform conservation management decisions,” says Prof. Ulrich Brose, senior author of the study who has since moved to the German Centre for Integrative Biodiversity Research (iDiv) and the University of Jena, where he is head of the research group Theory in Biodiversity Science.

The study was conducted within the collaborative research centre “Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)” (EFForTS), a larger collaboration between the University of Göttingen and several Indonesian universities funded by the German Research Foundation (DFG). Further information can be found online at http://www.uni-goettingen.de/en/310995.html.

Original publication: Andrew D Barnes, Kara Allen et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nature Ecology and Evolution 2017. Doi: 10.1038/s41559-017-0275-7.

Contact:
Dr. Andrew Barnes
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Leipzig University
Phone: +49 341 9733-122
Email: andrew.barnes@idiv.de
Internet: http://www.idiv.de/en/groups_and_people/employees/details/eshow/barnes-andrew.html

Dr. Kara Allen
West Virginia University
Department of Biology
Email: kara.allen@mail.wvu.edu
Internet: http://www.researchgate.net/profile/Kara_Allen2

Prof. Dr. Ulrich Brose
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Friedrich Schiller University Jena
Phone: +49 341 9733-205
Email: ulrich.brose@idiv.de
Internet: http://www.idiv.de/en/groups_and_people/employees/details/eshow/brose-ulrich.html

Weitere Informationen:

http://www.uni-goettingen.de/en/310995.html

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>