Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From bacteria to birds: tropical plantations disrupt biodiversity

29.08.2017

Scientists from Göttingen University investigate effects of land conversion in South-East Asia

A research team at the University of Göttingen has conducted a large-scale study in Indonesia to understand how the conversion of rainforest to rubber and oil palm plantations alters biodiversity of these ecosystems.


A recently established smallholder oil-palm plantation in the Jambi region of Sumatra, Indonesia.

Photo: Andrew Barnes


Researchers collecting invertebrates from the leaf litter on one of the research plots in a rubber plantation.

Photo: Andrew Barnes

The researchers found that land-use change directly reduces the number of different species as well as the number of individual plants and animals, especially at the highest trophic levels, and that interactions among different organisms control how the whole ecosystem responds to land use. The study was published in Nature Ecology and Evolution.

Tropical rainforests are under threat from the human demand for natural products like vegetable oils and rubber, which are found in food and common household products around the world. The demand is driving the conversion of tropical biodiversity hotspots to agricultural plantations, and over the past two decades, deforestation rates in South-East Asia have rapidly increased.

This has profound consequences for biodiversity, affecting, for example, plants, insects and birds. These different organisms constantly interact with each other, especially through trophic interactions, like when insects eat plants or birds eat insects. Because of these interactions, when one group of organisms is affected by deforestation, this may have negative consequences for another group as well. Ultimately, trophic interactions can determine how whole ecosystems respond to disturbances.

The Göttingen researchers investigated the direct and cascading effects of land-use change in Sumatra by collecting data from a range of organisms, among them plants, bacteria, invertebrates and birds. Their research plots were located in rainforest, areas of rubber trees mixed with forest tree species (“jungle rubber”) and monoculture rubber and oil palm plantations.

The researchers found that species diversity was as much as 65 percent lower on the study plots in monoculture plantations compared to rainforest plots. This was due to direct effects like higher mortality of insects due to the use of toxic pesticides in plantations, and also to indirect effects which occur through the disruption of organisms at lower trophic levels that serve as resources for organisms higher in the food chain. For example, they found reduced species diversity of invertebrates that eat leaf litter (such as millipedes and cockroaches) in plantations, which then impacted the predators that rely on these invertebrates for food, like spiders.

“Essentially, we found that responses of ecosystems to land-use change are highly complex when we look at many taxonomic groups simultaneously,” explains lead author Dr. Andrew D. Barnes. Dr. Kara Allen, the other lead author, points out: “Our results provide important insight into how whole ecosystems react to human disturbances. However, they also suggest that we still have much to learn about how high-diversity systems operate.”

The study also revealed other interesting trends: It has often been shown that larger-bodied species at higher trophic levels, such as predatory birds or tigers, tend to be the first to go extinct when natural ecosystems are disturbed by humans. The researchers were able to confirm this theory – the highest trophic levels were indeed the most strongly affected because of the combination of their reliance on organisms at the lower trophic levels for food, along with the simultaneous direct impacts of land-use change.

“By pointing to groups that will have the most impact on ecosystem-level conservation, these sorts of insights should help to better inform conservation management decisions,” says Prof. Ulrich Brose, senior author of the study who has since moved to the German Centre for Integrative Biodiversity Research (iDiv) and the University of Jena, where he is head of the research group Theory in Biodiversity Science.

The study was conducted within the collaborative research centre “Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)” (EFForTS), a larger collaboration between the University of Göttingen and several Indonesian universities funded by the German Research Foundation (DFG). Further information can be found online at http://www.uni-goettingen.de/en/310995.html.

Original publication: Andrew D Barnes, Kara Allen et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nature Ecology and Evolution 2017. Doi: 10.1038/s41559-017-0275-7.

Contact:
Dr. Andrew Barnes
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Leipzig University
Phone: +49 341 9733-122
Email: andrew.barnes@idiv.de
Internet: http://www.idiv.de/en/groups_and_people/employees/details/eshow/barnes-andrew.html

Dr. Kara Allen
West Virginia University
Department of Biology
Email: kara.allen@mail.wvu.edu
Internet: http://www.researchgate.net/profile/Kara_Allen2

Prof. Dr. Ulrich Brose
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig
Friedrich Schiller University Jena
Phone: +49 341 9733-205
Email: ulrich.brose@idiv.de
Internet: http://www.idiv.de/en/groups_and_people/employees/details/eshow/brose-ulrich.html

Weitere Informationen:

http://www.uni-goettingen.de/en/310995.html

Thomas Richter | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>