Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Know who your friends are

12.10.2009
The brain is a self-assembling computer, in which different types of neurons extend their processes outward to interact with each other over the course of nervous system development, establishing tentative axon–dendrite connections that are subsequently formalized as mature synapses.

There are rules governing which types of connections should be established, although it remains unclear how neurons ‘know’ these rules. “Recognition seems to occur because neurons are always connected with [the] right partners, but the real mechanisms for this recognition remain unknown—and it is even unclear whether such ‘recognition’ really takes place,” explains Masatoshi Takeichi of the RIKEN Center for Developmental Biology in Kobe.

The cerebellum primarily receives inputs from two kinds of axonal fibers: mossy fibers, originating from pontine nuclei in the cerebral cortex, and climbing fibers, which emerge from inferior olivary nuclei in the medulla. Each of these fiber types in turn associates with a specific subset of cerebellar cells; mossy fibers form synapses with granule cells (GCs), while climbing fibers connect to Purkinje cells.

Prior data indicate that these various cells interact indiscriminately early in development but then abort inappropriate connections as the brain matures, and Takeichi and graduate student Shoko Ito recently explored this phenomenon in the context of studying how cerebellar GCs find the right partner (1).

Co-cultures of GCs with pontine tissue showed little evidence of specific interaction between cells at first, but within several days began to exhibit signs of synapse formation. Interestingly, time-lapse movies revealed that dendrites from GCs appear capable of specifically recognizing mossy fibers, forming claw-like structures that physically latch onto these axons.

GCs showed markedly different behavior when cultured with climbing fibers or hippocampal cells, forming connections that displayed some characteristics of working synapses, but without the full range of morphological changes observed in dendrites from the pontine co-cultures. “Granule cells could form synapses with the correct positioning and morphology only when they met the mossy fibers,” says Takeichi. “This finding was unexpected.”

Overall, these findings suggest that although cerebellar cells can forge tentative links with a diverse array of axons, specific recognition mechanisms are in place to ensure proper synaptic wiring. “We have convincingly demonstrated that neurons do recognize their specific partners even in vitro, where environmental cues which could assist neuronal recognition are absent,” says Takeichi. Exactly which factors facilitate this recognition remains a mystery, however, and he indicates that this will be a focus of future research from his laboratory.

The corresponding author for this highlight is based at the Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6050
http://www.researchsea.com

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>