Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How friendly bacteria avoids immune attack to live happily in the gut

02.09.2008
For a long time scientists have been puzzled by the fact that the immune system in the gut is capable of fighting toxic bacterial infection while staying, at the same time, tolerant to its resident “friendly” bacteria.

But an article now published in the journal Cell Host & Microbe1 is starting to open the door to this mystery by revealing how a recently discovered gene - pims – is activated by the gut immune response against friendly bacteria to rapidly suppress it, effectively creating tolerance to the gut microbiota.

In the same way pims is also shown to control the magnitude of immune responses against toxic bacteria by suppressing immuno-reactivity when a certain activation threshold is achieved, assuring, in this way, that the response stays restricted to the infection site and is proportional to the extent of the infection. These results suggest that the balance tolerance/immuno-reaction in the gut is achieved through self-regulatory cycles where suppression by negative regulators, such as pims, is triggered as soon as a specific threshold of immuno activation is reached.

This work has implications in the understanding of diseases in which the normal gut immune response is disrupted - such as Crohn's disease and ulcerative colitis – but, potentially, also in oral tolerance. In fact, oral tolerance vaccines - in which the molecule we want immuno-tolerated is ingested - have been tentatively used for the treatment of several autoimmune diseases (where the immune system abnormally attacks parts of the body) with mixed results and the new research, by elucidating the players in gut immuno-tolerance, might help to understand why.

Multicellular animals live peacefully in close contact with a multitude of microorganisms that inhabit their bodies. Humans, for example, have more microorganisms within the body than cells, with just the intestine containing up to 100 trillion microbes, a number about 10 times greater that all our cells. Still, although we remain fully immune competent - so capable of responding to infection by pathogenic microorganisms - we do not react against these “friendly” bacteria. But how do these two opposite immune responses against bacteria so similar exist simultaneously?

In order to understand better this phenomenon Nouara Lhocine, Paulo S. Ribeiro, Francois Leulier and colleagues working in France, London, Switzerland and Portugal used Drosophila (fruit fly) – a common animal model to study human gene functions due to the large numbers of genes shared by the two species - to investigate the possibility that a recently discovered gene – pims – could be involved in this coexistence of tolerance and immuno-reactivity.

In fact, in the Drosophila gut, one of the main responses against bacterial infection is the Imd pathway. The activation of this immune pathway is triggered by peptidoglycans – sugars found on the bacterial wall – and results in the activation of a molecule called Relish. Once activated, Relish induces the expression of several antimicrobial genes to neutralize the invading pathogens. “Friendly” bacteria, on the other hand, despite containing peptidoglycans in their wall exist peacefully inside Drosophila’s gut. The new found gene– pims – was shown to be expressed during bacterial infection in the gut while its inhibition apparently disrupted the Imd pathway suggesting a role in the regulation of this pathway.

Lhocine, Ribeiro, Leulier and colleagues started by analysing pims expression in Drosophila to find it mainly expressed in the gut where it depends on the existence of “friendly” bacteria and activated Relish. These results further suggested – since a basal level of immune response is necessary for pims expression - that this gene acted on the immune response and, specifically, in the gut.

The next step was to analyse what happened to this gut immune response in animals lacking pims. And it was found that, not only these animals showed an immune response against “friendly” bacteria, but also that, during toxic bacterial infection the immune response abnormally spread out of the site of infection risking body injury. These results reveal pims as a negative regulator of the immune response (Imd pathway) granting tolerance to “friendly” gut bacteria, but also assuring that immune responses against infection are contained to the site of infection.

Although the exact mechanism of pims is not fully understood, Lhocine, Ribeiro, Leulier and colleagues were able to show that the peptide produced by pims binds a peptidoglycan receptor, part of the Imd pathway, called PGRP-LCx, . As PGRP-LCx recognition of peptidoglycans activates Imd and ultimately Relish, the outcome of the interaction with Pims is lack of availability to peptidoglycans and consequently suppression of the (Imd) immune response. Results from microscopic observation and separation of the cell’s soluble and insoluble components suggested, however, that PIMS acted, not by destroying PGRP-LCx but by misplacing it, away from its usual localisation – the plasma membrane – resulting in an incapability of the immune system to see peptidoglycans and consequently of getting activated.

Lhocine, Ribeiro, Leulier and colleagues’ results suggest a model where pims is a negative immuno-regulator triggered when specific Imd activation thresholds are reached, after which the immune response is suppressed. It is the existence of this immuno-reactivity threshold that allows the simultaneous existence of tolerance to the gut microorganisms while maintaining immuno-reactivity against infection.. Since peptidoglycans are widely present in bacteria the next question would be to find if the regulatory system here described applies to other host-microorganisms interactions, including those involving humans.

Piece by Catarina Amorim ( catarina.amorim at linacre.ox.ac.uk)

Contacts for the authors of the original paper
Nouara Lhocine
Paulo S. Ribeiro - paulo.ribeiro@icr.ac.uk
Francois Leulier - leulier@cgm.cnrs-gif.fr

Catarina Amorim | alfa
Further information:
http://www.estatisticas.gpeari.mctes.pt
http://www.cellhostandmicrobe.com/content/article/abstract?uid=PIIS1931312808002229

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>