Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fresh insights into the Venus flytrap

Trap closes, insect dies: the plant known as the Venus flytrap relies on an ingenious mechanism for capturing tiny creatures. Researchers from the University of Würzburg are now providing new insights into how this insect trap works in the magazine PNAS.

In the wild, the Venus flytrap only grows in wetlands deficient in nutrients in the USA. The insects that it captures and digests with its leaves provide it with valuable additional nutrition. If a fly or ant crawls around on the plant’s two-lobed leaves, the plant registers this contact and snaps its leaves shut in a fraction of a second, trapping its prey. In a kind of little “green stomach”, gland secretions then cause the fly or ant to be digested. The nutrients released mainly from the proteins in the prey are absorbed by the Venus flytrap so that it can expand its arsenal of traps.

Open Venus flytrap (A): The sensory hairs are clearly visible; their nature is made clear in the sectional enlargement (B) using scanning electron microscopy. If potential prey touches a hair, the hair’s cells are squeezed so that it bends. This creates an electrical signal that travels over the surface of the trap. If a second signal follows shortly after, the trap snaps shut. From its rosette-like gland complexes (visible in B) the plant then secretes digestive enzymes. There are 60 glands for every square millimeter, so around 37,000 per trap.
Images: Christian Wiese (A), Benjamin Hedrich (B)

Electrical, chemical, and mechanical signals

“Ever since the days of Charles Darwin, biologists have been trying to find out how sensors and biomechanics function in the Venus flytrap", says Professor Rainer Hedrich. This biophysicist and his team from the University of Würzburg have now made new discoveries. In the US journal PNAS (Proceedings of the National Academy of Sciences) they describe how the Venus flytrap couples electrical, chemical, and mechanical signals in order to capture and digest insects.

The Würzburg scientists were assisted in their work by Nobel Prize winner Erwin Neher from Göttingen, an expert in secretion processes in animal cells, and by plant hormone specialist Bettina Hauser from Halle.

“Touch” hormone stimulates digestion

Once an insect is caught in the trap, it tries desperately to escape. But these mechanical stimuli activate the trap more and more: it produces the touch hormone OPDA, which in turn triggers the glands in the trap to secrete digestive enzymes. This can be demonstrated using an experiment: if a compound resembling OPDA is administered to the traps, they shut and form a stomach in which the glands become active – without any contact stimuli from prey whatsoever.

Stimulation puts other traps on high alert

The researchers have made another finding: if a trap is stimulated by the OPDA hormone, it forwards this chemical signal to the other traps, putting them on higher alert of a catch. This makes perfect sense as insects rarely arrive on their own: where one ant appears, there are likely to be others following closely behind.

Stimulated traps also respond with a series of action potentials, i.e. a temporary change in the electrical conductivity of their cell membranes. “From action potential to action potential, the trap closes ever more tightly. By struggling to survive, the victims keep on making their situation worse", says Hedrich.

Going without food during times of drought

The secretion of digestive fluid also means a loss of water for the Venus flytrap. So, how does it react during times of drought? What happens is that the water stress hormone abscisic acid makes the plant less sensitive to touch and suppresses the production of watery secretion, as the scientists have established. In the event of a shortage of water, the flytrap goes without food – it starves itself so it does not die of thirst.

Deciphering the genetic make-up of the Venus flytrap

Hedrich’s conclusions: “The closing of the traps and the secretion of digestive liquid appear to be controlled via different signal paths. The task is to nail the genes responsible. That is why we are now working on deciphering the genetic make-up of the Venus flytrap.” The scientists also want to discover how this carnivorous plant puts together a fluid that will digest its prey.

Millions from the European Research Council

Hedrich is pressing ahead with his research into the Venus flytrap and other carnivorous plants thanks to top-level funding. The European Research Council has given him a grant of EUR 2.5 million for his work. Hedrich’s team consists of ten bioinformaticians, molecular biologists, chemists, and biophysicists. The researchers are planning to analyze the genetic material of the main types of trap as well as the genes that are only active in the traps. By comparing different plant species, they want to find clues as to the evolution of this special diet.

María Escalante-Pérez, Elzbieta Krol, Annette Stange, Dietmar Geiger, Khaled A. S. Al-Rasheid, Bettina Hause, Erwin Neher, and Rainer Hedrich: „A special pair of phytohormones controls excitability, slow closure, and external stomach formation in the Venus flytrap”, PNAS 2011, published online on 06-11-2011, doi:10.1073/pnas.1112535108


Prof. Dr. Rainer Hedrich, T +49 (0)931 31-86100,

Robert Emmerich | Uni Würzburg
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>