Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freeze or run? Not that simple

25.08.2010
EMBL scientists discover neural switch that controls fear

Fear can make you run, it can make you fight, and it can glue you to the spot. Scientists at the European Molecular Biology Laboratory (EMBL) in Monterotondo, Italy and GlaxoSmithKline in Verona, Italy, have identified not only the part of the brain but the specific type of neurons that determine how mice react to a frightening stimulus.

In a study published today in Neuron, they combined pharmaceutical and genetic approaches with functional magnetic resonance imaging (fMRI) in mice. Their findings show that deciding whether or not to freeze to fear is a more complex task for our brains than we realised.

The scientists used an innovative technique to control the activity of specific cells in the brain of mice that were experiencing fear. The mice were genetically engineered so that only these cells contain a chemical receptor for a specific drug. When the scientists inject the mouse with that drug it acts on the receptor and blocks the electrical activity of those cells allowing the researchers to find out how these cells are involved in controlling fear. In this case, they used this pharmaco-genetic technique to turn off a set of neurons, called type I cells, in a region of the brain called the amygdala, which was known to be involved in responses to fear. To measure fear in mice, the EMBL scientists trained the mice to associate a sound with an unpleasant shock: when the mice heard the sound, they would freeze in fear.

“When we inhibited these neurons, I was not surprised to see that the mice stopped freezing because that is what the amygdala was thought to do. But we were very surprised when they did a lot of other things instead, like rearing and other risk-assessment behaviours,” says Cornelius Gross, who led the research at EMBL, “it seemed that we were not blocking the fear, but just changing their responses from a passive to an active coping strategy. That is not at all what this part of the amygdala was thought to do.”

To find out what other parts of the brain were involved in these responses, the scientists used a magnetic resonance brain scanning technique developed for use in mice by Angelo Bifone’s team at GlaxoSmithKline. Much to their surprise, they found that the switch from passive to active fear was accompanied by the activation of large parts of the outer layer of the brain – the cortex – and blocking this activation with the drug atropine could reinstate freezing behaviour and flip back the fear switch. This will give scientists interested in fear circuitry some thinking to do, as the amygdala was thought to control fear via the brain stem, not the cortex.

“This is a powerful demonstration of the ability of functional MRI to resolve brain circuits involved in complex tasks, like processing of emotions and control of behavioural responses,” says Bifone, now at the Italian Institute of Technology.

We humans, too, show freezing and risk-assessment behaviours in response to fear. Understanding how to switch from passive to more active fear coping strategies might be helpful for us in adapting to the stress and unpredictability of modern life, the scientists say.

Sonia Furtado | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>