Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freeway air bad for mouse brain

07.04.2011
Study finds brain damage typical of aging and memory loss after short-term exposure to vehicle pollution

If mice commuted, their brains might find it progressively harder to navigate the maze of Los Angeles freeways.

A new study reveals that after short-term exposure to vehicle pollution, mice showed significant brain damage — including signs associated with memory loss and Alzheimer's disease.

The mind-numbing toxin is not an exhaust gas, but a mix of tiny particles from burning of fossil fuel and weathering of car parts and pavement, according to the study to be published Thursday, April 7 in the leading journal Environmental Health Perspectives.

Many studies have drawn a link between vehicle pollution and health problems. This is the first to explore the physical effect of freeway pollution on brain cells.

The authors found a way to recreate air laden with freeway particulate matter inside the laboratory. Whether in a test tube or in live mice, brain cells showed similar responses:

Neurons involved in learning and memory showed significant damage,

The brain showed signs of inflammation associated with premature aging and Alzheimer's disease,

Neurons from developing mice did not grow as well.

The freeway particles measured between a few dozen to 200 nanometers — roughly one-thousandth the width of a human hair, and too small for car filtration systems to trap.

"You can't see them, but they are inhaled and have an effect on brain neurons that raises the possibility of long-term brain health consequences of freeway air," said senior author Caleb Finch, an expert in the effects of inflammation and holder of the ARCO/William F. Kieschnick Chair in the Neurobiology of Aging.

Co-author Constantinos Sioutas, of the USC Viterbi School of Engineering, developed the unique technology for collecting freeway particulates in a liquid suspension and recreating polluted air in the laboratory. This made it possible to conduct a controlled study on cultured brain cells and live animals. (For all co-authors and access to the study after the embargo lifts: http://ehponline.org/article/info:doi/10.1289/ehp.1002973)

Exposure lasted a total of 150 hours, spread over 10 weeks, in three sessions per week lasting five hours each.

"Of course this leads to the question, 'How can we protect urban dwellers from this type of toxicity?' And that's a huge unknown," Finch said.

The authors hope to conduct follow-up studies on issues such as:

Memory functions in animals exposed to freeway particulates,

Effects on development of mice exposed prenatally,

Lifespan of exposed animals,

Interaction of particulates with other components of smog, such as heat and ozone,

Potential for recovery between periods of exposure,

Comparison of effects from artificially and naturally occurring nanoparticles,

Chemical interactions between freeway particulates and brain cells.
If further studies confirm that freeway particulates pose a human health hazard, solutions will be hard to find.

Even an all-electric car culture would not solve the problem on its own, Finch said.

"It would certainly sharply decrease the local concentration of nanoparticles, but then at present electrical generation still depends upon other combustion processes — coal — that in a larger environment contribute nanoparticles anyway.

"It's a long-term global project to reduce the amount of nanoparticles around the world. Whether we clean up our cars, we still have to clean up our power generation."

In addition to senior author Finch, the research team consisted of lead author Todd Morgan, a doctoral student in gerontology, with fellow student David Davis and research lab technician Nahoko Iwata; neuroscientist Michel Baudry and chemist Nicos Petasis of the USC Dornsife College, with students Jeremy Tanner, David Snyder, Yu-Tien Hsu and Jeremy Winkler; Sioutas, of the Viterbi School, with students Zhi Ning and Winnie Kam; and environmental health expert Jiu-Chiuan Chen, of the Keck School of Medicine.

Funding came through grants from USC's James H. Zumberge Faculty Research & Innovation Fund and the Ellison Medical Foundation.

For an embargoed, advance full-text copy of the paper or to arrange an interview with a researcher, contact Suzanne Wu at suzanne.wu@usc.edu.

Suzanne Wu | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>