Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer FEP Process disinfects Seeds effectively and efficiently

15.06.2011
Scientists at the Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden have developed a process for effectively and efficiently freeing seeds of pathogens such as bacteria and fungi.

Pathogenic EHEC bacteria have recently caused widespread illness in Germany and Europe and this has created huge uncertainty for consumers. The latest reports point the finger at the seeds of bean shoots as possibly being the source of the EHEC bacteria contamination.


A germ-free seed product from the Fraunhofer FEP sterilization process
© Fraunhofer FEP

Regardless of what source is eventually found, recent weeks have brought home the severe consequences of contaminated food and highlighted the importance of effective treatment of seeds and efficient sterilization of foods.

The Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden has for some years had a proven technology for effectively rendering pathogens such as bacteria and fungi on seeds harmless.

The process utilizes low-energy electrons to kill germs. The special configuration of the equipment means that the seeds are separated and that the electrons can bombard the seeds from all sides. The electrons only act on and in the seed coat, and the ability of the seeds to germinate and the DNA of the seeds are not adversely affected. A special quality monitoring system safeguards and manages the quality of the seed treatment, ensuring the maximum effect for optimum plant tolerance. As the treatment involves solely a physical process, the harmful organisms cannot develop resistance as can occur when antibiotics are used. In addition, there is no use of chemicals and so the environment and the health of users are not impacted.

In Germany the effectiveness of electron treatment on many types of cereal seeds and against various pathogens (including pseudomonas bacteria) has been demonstrated. Many years of collaborative work with the Julius-Kühn-Institute have confi rmed that the electron treatment of seeds is suitable for different cultivation conditions. Besides the Julius-Kühn-Institute, the European and Mediterranean Plant Protection Organization (EPPO) also recommends the seed sterilization process using electrons for both conventional and organic agriculture. A mobile system for seed treatment using electrons is already available. This has an hourly seed throughput of up to 30 metric tons. Up until now some 4000 to 5000 metric tons of seed per year have been processed in Germany using this technology and subsequently cultivated in conventional and organic agriculture. This has predominantly concerned cereal seeds (wheat, barley, oats), and also seeds from rape, leguminous plants, and vegetables. Frank-Holm Rögner, head of the Electron Beam Processes business unit at the Fraunhofer FEP, stresses: “The electron treatment of seeds is an advanced technology and is already available in Saxony. Expansion of the technology to the sterilization of foods is certainly feasible from a technological point of view.” The treatment of foods with accelerated electrons is currently not permitted in Germany. An ongoing study by the EU has, however, shown that accelerated electrons have no adverse effects on the properties of foods compared to foods sterilized using conventional methods.

Scientific contact:
Frank-Holm Rögner
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-242
frank-holm.roegner@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.fep.fraunhofer.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>