Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frankincense as a Medicine

09.07.2012
Pharmacists of University Jena clarify the anti-inflammatory impact of boswellic acids

It was one of the gifts of the Magi – in addition to myrrh and gold they offered frankincense to the newly born baby Jesus. Since the ancient world the aromatic fragrance of burning Boswellia resin has been part of many religious ceremonies and is still used as a means to indicate special festive atmosphere in the church today.

But frankincense can do much more: “The resin from the trunk of Boswellia trees contains anti-inflammatory substances,“ Professor Dr. Oliver Werz of the Friedrich Schiller University Jena (Germany) says. The chair of Pharmaceutical and Medical Chemistry is convinced that these substances can be very beneficial in therapies against diseases like asthma, rheumatoid arthritis or atopic dermatitis.

However, so far the active substances in frankincense cannot at present be found in drugs in German pharmacies, as the pharmacological impact of frankincense hasn’t been thoroughly investigated. “Although Boswellia resin has been used for thousands of years in the Ayurvedic medicine for instance, the clinical studies we have so far are not suffice for a license in Germany and Europe,“ Professor Werz explains.

But that could change. As part of a mutual project with partners of the University Saarbrücken and a start-up company, Professor Werz and his team examined the curative effect of frankincense. In this project the researchers were able to show where exactly the boswellic acids – which are responsible for the impact of the ingredients of the Boswellia resin – actually interfere in the process of inflammation. “Boswellic acids interact with several different proteins that are part of inflammatory reactions, but most of all with an enzyme which is responsible for the synthesis of prostaglandin E2,” Oliver Werz points out. Prostaglandin E2 is one of the mediators of the immune response and plays a decisive role in the process of inflammation, in the development of fever and of pain. ”Boswellic acids block this enzyme efficiently and thereby reduce the inflammatory reaction,“ the Jena pharmacist explains. With this, not only a targeted use in the therapy of inflammatory diseases is conceivable. It can also be expected that boswellic acids have less side effects than today’s prevalent anti-inflammatory treatments like diclofenac or indometacin. Their impact is less specific, they can increase the risk of stomach ulcers and can negatively affect renal function.

In their latest study the researchers around Professor Werz additionally compared the resin of different kinds of frankincense in its anti-inflammatory impact. There are more than ten Boswellia species in the world. The most well-known and widely-used one is the Boswellia serrata from Northern and central India. “We were able to show that the resin of the Boswellia papyrifera is ten times more potent,” Professor Werz explains a further result of his research. This species mostly occurs in the Northeast of Africa (Ethiopia, Somalia) and on the Arabian Peninsula (Yemen, Oman).

Whether frankincense will become accepted, is indeed not only due to the outcome of the clinical examination which is yet to come. “Boswellic acids exclusively occur in the resin of Boswellia trees and are very difficult to produce synthetically,“ Werz points out. Therefore these trees are the only source of these promising active ingredients. However Boswellia trees are already an endangered tree species. In many places they are just being used as heating fuel. “Thereby without sustained protection not only plant species are endangered but at the same time medicine loses promising active ingredients,” Professor Werz warns.

Contact:
Professor Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Philosophenweg 14, D-07743 Jena
Germany
Phone: ++49 3641 949801
Email: oliver.werz[at]uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>