Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Frankincense as a Medicine

Pharmacists of University Jena clarify the anti-inflammatory impact of boswellic acids

It was one of the gifts of the Magi – in addition to myrrh and gold they offered frankincense to the newly born baby Jesus. Since the ancient world the aromatic fragrance of burning Boswellia resin has been part of many religious ceremonies and is still used as a means to indicate special festive atmosphere in the church today.

But frankincense can do much more: “The resin from the trunk of Boswellia trees contains anti-inflammatory substances,“ Professor Dr. Oliver Werz of the Friedrich Schiller University Jena (Germany) says. The chair of Pharmaceutical and Medical Chemistry is convinced that these substances can be very beneficial in therapies against diseases like asthma, rheumatoid arthritis or atopic dermatitis.

However, so far the active substances in frankincense cannot at present be found in drugs in German pharmacies, as the pharmacological impact of frankincense hasn’t been thoroughly investigated. “Although Boswellia resin has been used for thousands of years in the Ayurvedic medicine for instance, the clinical studies we have so far are not suffice for a license in Germany and Europe,“ Professor Werz explains.

But that could change. As part of a mutual project with partners of the University Saarbrücken and a start-up company, Professor Werz and his team examined the curative effect of frankincense. In this project the researchers were able to show where exactly the boswellic acids – which are responsible for the impact of the ingredients of the Boswellia resin – actually interfere in the process of inflammation. “Boswellic acids interact with several different proteins that are part of inflammatory reactions, but most of all with an enzyme which is responsible for the synthesis of prostaglandin E2,” Oliver Werz points out. Prostaglandin E2 is one of the mediators of the immune response and plays a decisive role in the process of inflammation, in the development of fever and of pain. ”Boswellic acids block this enzyme efficiently and thereby reduce the inflammatory reaction,“ the Jena pharmacist explains. With this, not only a targeted use in the therapy of inflammatory diseases is conceivable. It can also be expected that boswellic acids have less side effects than today’s prevalent anti-inflammatory treatments like diclofenac or indometacin. Their impact is less specific, they can increase the risk of stomach ulcers and can negatively affect renal function.

In their latest study the researchers around Professor Werz additionally compared the resin of different kinds of frankincense in its anti-inflammatory impact. There are more than ten Boswellia species in the world. The most well-known and widely-used one is the Boswellia serrata from Northern and central India. “We were able to show that the resin of the Boswellia papyrifera is ten times more potent,” Professor Werz explains a further result of his research. This species mostly occurs in the Northeast of Africa (Ethiopia, Somalia) and on the Arabian Peninsula (Yemen, Oman).

Whether frankincense will become accepted, is indeed not only due to the outcome of the clinical examination which is yet to come. “Boswellic acids exclusively occur in the resin of Boswellia trees and are very difficult to produce synthetically,“ Werz points out. Therefore these trees are the only source of these promising active ingredients. However Boswellia trees are already an endangered tree species. In many places they are just being used as heating fuel. “Thereby without sustained protection not only plant species are endangered but at the same time medicine loses promising active ingredients,” Professor Werz warns.

Professor Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Philosophenweg 14, D-07743 Jena
Phone: ++49 3641 949801
Email: oliver.werz[at]

Dr. Ute Schönfelder | idw
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>