Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Frankincense as a Medicine

09.07.2012
Pharmacists of University Jena clarify the anti-inflammatory impact of boswellic acids

It was one of the gifts of the Magi – in addition to myrrh and gold they offered frankincense to the newly born baby Jesus. Since the ancient world the aromatic fragrance of burning Boswellia resin has been part of many religious ceremonies and is still used as a means to indicate special festive atmosphere in the church today.

But frankincense can do much more: “The resin from the trunk of Boswellia trees contains anti-inflammatory substances,“ Professor Dr. Oliver Werz of the Friedrich Schiller University Jena (Germany) says. The chair of Pharmaceutical and Medical Chemistry is convinced that these substances can be very beneficial in therapies against diseases like asthma, rheumatoid arthritis or atopic dermatitis.

However, so far the active substances in frankincense cannot at present be found in drugs in German pharmacies, as the pharmacological impact of frankincense hasn’t been thoroughly investigated. “Although Boswellia resin has been used for thousands of years in the Ayurvedic medicine for instance, the clinical studies we have so far are not suffice for a license in Germany and Europe,“ Professor Werz explains.

But that could change. As part of a mutual project with partners of the University Saarbrücken and a start-up company, Professor Werz and his team examined the curative effect of frankincense. In this project the researchers were able to show where exactly the boswellic acids – which are responsible for the impact of the ingredients of the Boswellia resin – actually interfere in the process of inflammation. “Boswellic acids interact with several different proteins that are part of inflammatory reactions, but most of all with an enzyme which is responsible for the synthesis of prostaglandin E2,” Oliver Werz points out. Prostaglandin E2 is one of the mediators of the immune response and plays a decisive role in the process of inflammation, in the development of fever and of pain. ”Boswellic acids block this enzyme efficiently and thereby reduce the inflammatory reaction,“ the Jena pharmacist explains. With this, not only a targeted use in the therapy of inflammatory diseases is conceivable. It can also be expected that boswellic acids have less side effects than today’s prevalent anti-inflammatory treatments like diclofenac or indometacin. Their impact is less specific, they can increase the risk of stomach ulcers and can negatively affect renal function.

In their latest study the researchers around Professor Werz additionally compared the resin of different kinds of frankincense in its anti-inflammatory impact. There are more than ten Boswellia species in the world. The most well-known and widely-used one is the Boswellia serrata from Northern and central India. “We were able to show that the resin of the Boswellia papyrifera is ten times more potent,” Professor Werz explains a further result of his research. This species mostly occurs in the Northeast of Africa (Ethiopia, Somalia) and on the Arabian Peninsula (Yemen, Oman).

Whether frankincense will become accepted, is indeed not only due to the outcome of the clinical examination which is yet to come. “Boswellic acids exclusively occur in the resin of Boswellia trees and are very difficult to produce synthetically,“ Werz points out. Therefore these trees are the only source of these promising active ingredients. However Boswellia trees are already an endangered tree species. In many places they are just being used as heating fuel. “Thereby without sustained protection not only plant species are endangered but at the same time medicine loses promising active ingredients,” Professor Werz warns.

Contact:
Professor Dr. Oliver Werz
Institute of Pharmacy
Friedrich Schiller University Jena
Philosophenweg 14, D-07743 Jena
Germany
Phone: ++49 3641 949801
Email: oliver.werz[at]uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>