Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragile X and Down syndromes share signalling pathway for intellectual disability

06.08.2012
Intellectual disability due to Fragile X and Down syndromes involves similar molecular pathways report researchers in The EMBO Journal. The two disorders share disturbances in the molecular events that regulate the way nerve cells develop dendritic spines, the small extensions found on the surface of nerve cells that are crucial for communication in the brain.

“We have shown for the first time that some of the proteins altered in Fragile X and Down syndromes are common molecular triggers of intellectual disability in both disorders,” said Kyung-Tai Min, one of the lead authors of the study and a professor at Indiana University and the Ulsan National Institute of Science and Technology in Korea.

“Specifically, two proteins interact with each other in a way that limits the formation of spines or protrusions on the surface of dendrites.” He added: “These outgrowths of the cell are essential for the formation of new contacts with other nerve cells and for the successful transmission of nerve signals. When the spines are impaired, information transfer is impeded and mental retardation takes hold.”

Intellectual disability is a developmental brain disorder that leads to impaired cognitive performance and mental retardation. Two of the most prevalent genetic causes of intellectual disability in humans are Fragile X and Down syndromes. Fragile X syndrome arises from a single gene mutation that prevents the synthesis of a protein required for neural development (Fragile X mental retardation protein). The presence of all or a part of a third copy of chromosome 21 in cells causes Down syndrome. Although both syndromes arise due to these fundamental genetic differences, the researchers identified a shared molecular pathway in mice that leads to intellectual disability for both disorders.

The mice that were used in the experiments are model systems for the study of Fragile X syndrome and Down syndrome. Down syndrome mice have difficulties with memory and brain function, and the formation of the heart is often compromised, symptoms that are also observed in humans with Down syndrome. Both model systems are very useful to scientists looking to dissect the molecular events that occur as the disorders take hold.

The scientists revealed that the Down syndrome critical region 1 protein (DSCR1) interacts with Fragile X mental retardation protein (FMRP) to regulate dendritic spine formation and local protein synthesis. By using specific antibodies that bind to the proteins as well as fluorescent labeling techniques they showed that DSCR1 specifically interacts with the phosphorylated form of FMRP. The overlapping molecular pathways of intellectual disability in both genetic disorders suggest that a common therapeutic approach might be feasible for both syndromes.

Min remarked: “We believe these experiments provide an important step forward in understanding the multiple roles of DSCR1 in neurons and in identifying a molecular interaction that is closely linked to intellectual disability for both syndromes.”

DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis
Wei Wang, John Z. Zhu, Karen T. Chang, Kyung-Tai Min
Read the paper: doi:10.1038/emboj.2012.190

Further information on The EMBO Journal is available at
http://www.nature.com/emboj/index.html
Media Contacts
Barry Whyte
Head | Public Relations and Communications
Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org
About EMBO
EMBO stands for excellence in the life sciences. The organization enables the best science by supporting talented researchers, stimulating scientific exchange and advancing policies for a world-class European research environment.

EMBO is an organization of 1500 leading life scientist members that fosters new generations of researchers to produce world-class scientific results. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in cutting-edge techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Barry Whyte | EMBO Press Office
Further information:
http://www.embo.org
http://www.nature.com/emboj/index.html

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>