Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase researchers develop a screen for identifying new anticancer drug targets

05.04.2011
Tumor suppressor genes normally control the growth of cells, but cancer can spring up when these genes are silenced by certain chemical reactions that modify chromosomes. Among the most common culprits responsible for inactivating these genes are histone deacetylases, a class of enzymes that remove acetyl groups from DNA-scaffolding proteins, and DNA methyltransferases, a family of enzymes that add methyl groups to DNA.

Drugs that counteract these enzymes, and thus reactivate tumor suppressor genes, are promising cancer therapies. For example, histone deacetylase inhibitors have been approved for the treatment of a type of T cell lymphoma, and are being tested in clinical trials for the treatment of a wide range of cancers.

Similarly, DNA methyltransferase inhibitors have been approved to treat a certain kind of leukemia, and are undergoing clinical studies for the treatment of other cancers. But these medications can have serious side effects. Now, Fox Chase Cancer Center postdoctoral associate Andrey Poleshko, PhD, along with Research Professor Richard A. Katz, PhD, and their colleagues have developed a screen to identify proteins that work in conjunction with these enzymes to repress gene expression. They will present their results at the AACR 102nd Annual Meeting 2011 on Tuesday, April 5.

Finding additional proteins that inactivate tumor suppressor genes, and understanding how they work, could lead to the broadening of this class of therapies beyond the two enzyme families, Poleshko said. "If we can find a way to block the action of such proteins, it may be possible to reactivate aberrantly silenced tumor suppressor genes and restore controlled growth in certain cancer cells," he noted. Such an approach would avoid interfering directly with the vital chromosome-modifying enzymes.

The researchers genetically programmed human cells to glow fluorescent green upon reactivation of the silent genes they harbor. By shutting down the activity of genes one by one and observing whether cells turned green, they were able to identify factors that help to suppress gene expression.

The method was efficient enough to permit screening of the entire genome, including 21,122 genes, and revealed 128 factors that are involved in regulating gene expression.

Research Assistant Professor Margret B. Einarson and Professor Anna Marie Skalka from Fox Chase are co-authors on the study.

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>