Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase researchers develop a screen for identifying new anticancer drug targets

05.04.2011
Tumor suppressor genes normally control the growth of cells, but cancer can spring up when these genes are silenced by certain chemical reactions that modify chromosomes. Among the most common culprits responsible for inactivating these genes are histone deacetylases, a class of enzymes that remove acetyl groups from DNA-scaffolding proteins, and DNA methyltransferases, a family of enzymes that add methyl groups to DNA.

Drugs that counteract these enzymes, and thus reactivate tumor suppressor genes, are promising cancer therapies. For example, histone deacetylase inhibitors have been approved for the treatment of a type of T cell lymphoma, and are being tested in clinical trials for the treatment of a wide range of cancers.

Similarly, DNA methyltransferase inhibitors have been approved to treat a certain kind of leukemia, and are undergoing clinical studies for the treatment of other cancers. But these medications can have serious side effects. Now, Fox Chase Cancer Center postdoctoral associate Andrey Poleshko, PhD, along with Research Professor Richard A. Katz, PhD, and their colleagues have developed a screen to identify proteins that work in conjunction with these enzymes to repress gene expression. They will present their results at the AACR 102nd Annual Meeting 2011 on Tuesday, April 5.

Finding additional proteins that inactivate tumor suppressor genes, and understanding how they work, could lead to the broadening of this class of therapies beyond the two enzyme families, Poleshko said. "If we can find a way to block the action of such proteins, it may be possible to reactivate aberrantly silenced tumor suppressor genes and restore controlled growth in certain cancer cells," he noted. Such an approach would avoid interfering directly with the vital chromosome-modifying enzymes.

The researchers genetically programmed human cells to glow fluorescent green upon reactivation of the silent genes they harbor. By shutting down the activity of genes one by one and observing whether cells turned green, they were able to identify factors that help to suppress gene expression.

The method was efficient enough to permit screening of the entire genome, including 21,122 genes, and revealed 128 factors that are involved in regulating gene expression.

Research Assistant Professor Margret B. Einarson and Professor Anna Marie Skalka from Fox Chase are co-authors on the study.

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>