Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase researchers develop a screen for identifying new anticancer drug targets

05.04.2011
Tumor suppressor genes normally control the growth of cells, but cancer can spring up when these genes are silenced by certain chemical reactions that modify chromosomes. Among the most common culprits responsible for inactivating these genes are histone deacetylases, a class of enzymes that remove acetyl groups from DNA-scaffolding proteins, and DNA methyltransferases, a family of enzymes that add methyl groups to DNA.

Drugs that counteract these enzymes, and thus reactivate tumor suppressor genes, are promising cancer therapies. For example, histone deacetylase inhibitors have been approved for the treatment of a type of T cell lymphoma, and are being tested in clinical trials for the treatment of a wide range of cancers.

Similarly, DNA methyltransferase inhibitors have been approved to treat a certain kind of leukemia, and are undergoing clinical studies for the treatment of other cancers. But these medications can have serious side effects. Now, Fox Chase Cancer Center postdoctoral associate Andrey Poleshko, PhD, along with Research Professor Richard A. Katz, PhD, and their colleagues have developed a screen to identify proteins that work in conjunction with these enzymes to repress gene expression. They will present their results at the AACR 102nd Annual Meeting 2011 on Tuesday, April 5.

Finding additional proteins that inactivate tumor suppressor genes, and understanding how they work, could lead to the broadening of this class of therapies beyond the two enzyme families, Poleshko said. "If we can find a way to block the action of such proteins, it may be possible to reactivate aberrantly silenced tumor suppressor genes and restore controlled growth in certain cancer cells," he noted. Such an approach would avoid interfering directly with the vital chromosome-modifying enzymes.

The researchers genetically programmed human cells to glow fluorescent green upon reactivation of the silent genes they harbor. By shutting down the activity of genes one by one and observing whether cells turned green, they were able to identify factors that help to suppress gene expression.

The method was efficient enough to permit screening of the entire genome, including 21,122 genes, and revealed 128 factors that are involved in regulating gene expression.

Research Assistant Professor Margret B. Einarson and Professor Anna Marie Skalka from Fox Chase are co-authors on the study.

Fox Chase Cancer Center is one of the leading cancer research and treatments centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE or 1-888-369-2427.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>