Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Causes Found for Stiff Skin Conditions

By studying the genetics of a rare inherited disorder called stiff skin syndrome, researchers at the Johns Hopkins University School of Medicine have learned more about scleroderma, a condition affecting about one in 5,000 people that leads to hardening of the skin as well as other debilitating and often life-threatening problems. The findings, which appear this week in Science Translational Medicine, open doors to testing new treatments.

“Scleroderma is a common and often devastating condition yet its cause remains mysterious. My greatest hope is that this work will facilitate the development of new and better treatments,” says Harry C. Dietz, M.D., the Victor A. McKusick Professor of Genetics and director of the Johns Hopkins William S. Smilow Center for Marfan Syndrome Research.

Also known as systemic sclerosis, scleroderma generally affects previously healthy young adults, causing scarring of skin and internal organs that can lead to heart and lung failure. “Most often individuals with scleroderma do not have other affected family members, precluding use of genetic techniques to map the underlying genes. Instead we turned to a rare but inherited form of isolated skin fibrosis called stiff skin syndrome, hoping to gain a foothold regarding cellular mechanisms that might prove relevant to both conditions,” says Dietz.

A number of clues led Dietz and his team to strongly suspect a role for the connective tissue protein fibrillin-1 in these skin conditions. First, excess collagen is a hallmark feature of both stiff skin syndrome and scleroderma. While studying Marfan syndrome, a condition caused by a deficiency of fibrillin-1, the researchers discovered that fibrillin-1 regulates the activity of TGFbeta, a molecule that induces cells to make more collagen. Second, other researchers have shown that duplication of a segment within the fibrillin-1 gene is associated with skin fibrosis in mice. And third, Dietz treated a patient at Johns Hopkins who had both stiff skin syndrome and eye problems associated with Marfan syndrome. “This seemed too much of a coincidence,” he says.

So Dietz’s team examined patients with stiff skin syndrome and found them to have excessive amounts of fibrillin-1 in the skin. The researchers then sequenced the fibrillin-1 gene in these same patients and found all the stiff skin syndrome mutations clustered in a single region of the fibrillin-1 protein known to interact with neighboring cells. Further examination showed that these mutations prevent fibrillin-1 from interacting with neighboring cells and lead to increased amounts and activity of TGFbeta, which causes excessive collagen outside cells.

The researchers then examined biopsies from patients with scleroderma and found all of the abnormalities seen in stiff skin syndrome. “It appears that fibriillin-1 helps to inform cells about the quality of their surroundings and also provides a mechanism — by concentrating TGFbeta — to induce extra cellular matrix production if the cell senses a deficiency,” says Dietz. “A breakdown in signaling coupled with excessive fibrillin-1 and TGFbeta leads to a perfect storm for skin fibrosis in stiff skin syndrome.”

While it remains unknown what triggers similar molecular events in scleroderma, these findings do suggest a number of potential treatment strategies, says Dietz.

This study was funded by the Scleroderma Research Foundation, Howard Hughes Medical Institute, Smilow Center for Marfan Syndrome Research, National Marfan Foundation, the National Institutes of Health and Shriners Hospital for Children.

Authors on the paper are P. J. Couke and A. De Paepe of Ghent University, Belgium; D. Riegert-Johnson of Mayo Clinic, Jacksonville, Florida; S. Iqbal, P. Whiteman and P. Handford of University of Oxford; V. McConnell of Northern Ireland Regional Genetics Centre, Belfast, Ireland; C. R. Chillakuri and H. J. Mardon of John Radcliffe Hospital, Headington, UK; D. Macaya of GeneDx, Gaithersburg, Maryland; E. C. Davis of McGill University, Montreal, Canada; D. R. Keene and L. Y. Sakai of Shriners Hospital for Children, Portland, Oregon; B. L. Loeys, E. E. Gerber, D. P. Judge, F. Wigley and Dietz of Johns Hopkins.

On the Web:
Harry C. Dietz
William S. Smilow Center for Marfan Syndrome Research
Johns Hopkins Scleroderma Center
Hopkins Medicine Today is the online news site that links you to the latest news, features, videos and podcasts from around Johns Hopkins Medicine

Audrey Huang | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>