Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Found in Amish a genetic mutation causing mental retardation very similar to Angelman syndrome

13.03.2013
It is the first time that associates a mutation in HERC2 with human disease

Researchers from the research group in growth factors and cell differentiation at IDIBELL and the University of Barcelona (UB) have participated in an international study that has identified the genetic cause of developmental delay observed in Amish individuals in the USA. The research results have been published in the Journal of Medical Genetics.

Amish community

Amish is a religious community known for a simple and traditional style of life and for its reluctance to adopt modern amenities and technologies. The IDIBELL-UB researcher José Luis Rosa explains that "in these communities there are high rates of inbreeding, making homozygous recessive diseases more frequent than in the general population".

Among the Amish community, the researchers have observed individuals with similar mental retardation observed in patients with Angelman syndrome: learning disabilities, speech impairment, movement disorders and characteristic behavioral patterns of hyperactivity and concentration. "We observed", explains Rosa, "that there must be a common genetic cause."

Genetic studies of fifteen Individuals of Old Order Amish Community in Ohio (USA) identified a mutation in HERC2 gene. The result is an unstable protein that does not function properly.

Genetic counseling

These findings not only will be useful to study the pathophysiology of the retardation observed among members of the Amish community, but also will be a new tool in the field of genetic counseling.

"Individuals from anywhere in the world that have similar symptoms to Angelman syndrome but do not have the genetic mutation associated with the disease and are diagnosed as Angelman-like, could have the same gene mutation in HERC 2 observed in Amish, which could provide an explanation for the disorder, and genetic counseling to their families", explains the researcher.

Currently, the team lead by José Luis Rosa is studying how this mutation works at molecular level and they are attempting to reverse in vitro the mutation in HERC2 and rescue the cell function. Rosa warns, however, "that we are very far from being able to apply a human gene therapy for this neurological disorder".

This study demonstrates for the first time the relationship netween the protein HERC2 and human diseases. Previously, the group of José Luis Rosa had described the relationship between a point mutation in the HERC1 gene and neurodegeneration in mice. "Overall," says the researcher, "these studies demonstrate an important role of HERC protein family" in the pathogenesis of neuronal disorders.

Article reference

Harlalka G.V., Baple E.L., Cross H., Kühnle S., Cubillos-Rojas M.*, Matentzoglu K., Patton M.A., Wagner K., Coblentz R., Ford D.L., Mackay D.J., Chioza B.A., Scheffner M., Rosa J.L.* and Crosby A.H. “Mutation of HERC2 causes developmental delay with Angelman-like features”. Journal of MedicalGenetics (2013) Feb;50(2):65-73.

Arantxa Mena | EurekAlert!

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>