Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Found in Amish a genetic mutation causing mental retardation very similar to Angelman syndrome

13.03.2013
It is the first time that associates a mutation in HERC2 with human disease

Researchers from the research group in growth factors and cell differentiation at IDIBELL and the University of Barcelona (UB) have participated in an international study that has identified the genetic cause of developmental delay observed in Amish individuals in the USA. The research results have been published in the Journal of Medical Genetics.

Amish community

Amish is a religious community known for a simple and traditional style of life and for its reluctance to adopt modern amenities and technologies. The IDIBELL-UB researcher José Luis Rosa explains that "in these communities there are high rates of inbreeding, making homozygous recessive diseases more frequent than in the general population".

Among the Amish community, the researchers have observed individuals with similar mental retardation observed in patients with Angelman syndrome: learning disabilities, speech impairment, movement disorders and characteristic behavioral patterns of hyperactivity and concentration. "We observed", explains Rosa, "that there must be a common genetic cause."

Genetic studies of fifteen Individuals of Old Order Amish Community in Ohio (USA) identified a mutation in HERC2 gene. The result is an unstable protein that does not function properly.

Genetic counseling

These findings not only will be useful to study the pathophysiology of the retardation observed among members of the Amish community, but also will be a new tool in the field of genetic counseling.

"Individuals from anywhere in the world that have similar symptoms to Angelman syndrome but do not have the genetic mutation associated with the disease and are diagnosed as Angelman-like, could have the same gene mutation in HERC 2 observed in Amish, which could provide an explanation for the disorder, and genetic counseling to their families", explains the researcher.

Currently, the team lead by José Luis Rosa is studying how this mutation works at molecular level and they are attempting to reverse in vitro the mutation in HERC2 and rescue the cell function. Rosa warns, however, "that we are very far from being able to apply a human gene therapy for this neurological disorder".

This study demonstrates for the first time the relationship netween the protein HERC2 and human diseases. Previously, the group of José Luis Rosa had described the relationship between a point mutation in the HERC1 gene and neurodegeneration in mice. "Overall," says the researcher, "these studies demonstrate an important role of HERC protein family" in the pathogenesis of neuronal disorders.

Article reference

Harlalka G.V., Baple E.L., Cross H., Kühnle S., Cubillos-Rojas M.*, Matentzoglu K., Patton M.A., Wagner K., Coblentz R., Ford D.L., Mackay D.J., Chioza B.A., Scheffner M., Rosa J.L.* and Crosby A.H. “Mutation of HERC2 causes developmental delay with Angelman-like features”. Journal of MedicalGenetics (2013) Feb;50(2):65-73.

Arantxa Mena | EurekAlert!

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>