Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Found: 1 in 3 billion

12.06.2009
The spelling mistake in the genetic code that causes a type of ovarian cancer

Vancouver scientists from the Ovarian Cancer Research (OvCaRe) Program at BC Cancer Agency and Vancouver Coastal Health Research Institute have discovered that there appears to be a single spelling mistake in the genetic code of granulosa cell tumours, a rare and often untreatable form of ovarian cancer.

This means that out of the three billion nucleotide pairs that make up the genetic code of the tumour, one – the same one in every tumour sample – is incorrect. The discovery, published online June 10th in the New England Journal of Medicine, marks the beginning of a new era of cancer genomics, where the complete genetic sequence of cancers can be unravelled and the mutations that cause them exposed. For women with granulosa cell tumours it represents the first specific diagnostic tool and clear path to develop much needed treatments for this cancer.

"This is really a two-fold discovery," says Dr. David Hunstman, lead author and genetic pathologist at the BC Cancer Agency and Vancouver General Hospital and associate professor in the Department of Pathology and Laboratory Medicine at the University of British Columbia. "It clearly shows the power of the new generation of DNA sequencing technologies to impact clinical medicine, and for those of us in the area of ovarian cancer research and care, by identifying the singular mutation that causes granulosa cell tumours, we can now more easily identify them and develop news ways to treat them."

In the past when scientists wanted to look at the sequence of a tumour, it was a laborious process, with each gene individually decoded into thousands of nucleotides and all data accumulated and sorted. Most studies could only look at one or at most a few of the 20,000 genes in the human genome whereas the new sequencing technologies allow scientists to look at everything at once. Through a collaboration between OvCaRe and the BC Cancer Agency's Genome Sciences Centre, the research team used "next generation" sequencing machines that are able to decode billions of nucleotides at rapid speed and new computer techniques to quickly assemble the data. "This task would have been unfathomable in terms of both cost and complexity even two years ago," says Dr. Marco Marra, Director of the BC Cancer Agency's Genome Sciences Centre.

The OvCaRe team decoded four tumour samples of the relatively rare granulosa cell tumour, which affects five percent of ovarian cancer patients. Using the new sequencing technology and bioinformatics, they discovered a single nucleotide located in the FOXL2 gene was mutated in every sample. The research team further validated their work by examining a large number of additional tumour samples from across Canada and around the world, and are satisfied they have been able to validate that this mutation is present in almost all granulosa cell tumours and not in unrelated cancers. Most types of cancers, including ovarian cancers, have a broad range of genetic abnormalities. This finding shows that granulosa cell tumours have a characteristic single DNA spelling mistake that can serve as an easy to read identity tag for this cancer type.

"Although it has been suggested that hundreds of any cancer type would have to be sequenced at great depth to make clinically useful discoveries," says Huntsman, "we had hypothesized that knowledge could be gained from much smaller studies if the cancers were carefully selected and represented clinically homogenous diseases. There are many rarer cancer types, like granulosa cell tumours that fit that bill and based upon our success in decoding granulosa cell tumours we are focusing on other rare tumours in what could be described as a guerrilla war on cancer. We hope that these studies will not only help future patients with rare tumours but will also teach us about more common ones as well."

"This cancer is unique," says Dr. Dianne Miller, gynecologic oncologist at BC Cancer Agency and Vancouver General Hospital. "For patients with this tumour type, it means they should all have the same response to the same treatment. And now that we have this pathway, we can look for existing cancer drugs that might work on this particular gene mutation to make the cancer disappear."

The OvCaRe team was able to make this discovery because of the multidisciplinary nature of the group, which crosses two provincial health authorities and is made up of gynaecologists, pathologists, bioinformatics specialists, and oncologists. Further enhancing the team's success is the centralization of patient treatment and record keeping.

"We are excited by this paper," says Dr. Michael Birrer, professor, Department of Medicine, Harvard Medical School and director GYN/Medical Oncology, Medicine, Massachusetts General Hospital. "The ovarian cancer research and care community now has new biologic insights into this poorly understood tumour and a potential therapeutic target. More importantly, this tour de force study reveals the power of genomic approaches to cancer, particularly rare tumours."

Ovarian cancer affects about one in 70 Canadian women. Approximately 2500 new cases are diagnosed each year and the five-year survival rate is only 30 per cent.

This study was supported by donors to VGH & UBC Hospital Foundation and the BC Cancer Foundation, and Genome BC for the development of Illumina sequencing at the BC Cancer Agency's Genome Sciences Centre. OvCaRe and the BC Cancer Agency's Genome Sciences Centre are also supported by the Michael Smith Foundation for Health Research.

Ovarian Cancer Research Program (OvCaRe) is a multidisciplinary research program involving clinicians and research scientists in gynaecology, pathology, and medical oncology. OvCaRe is a unique collaboration between the BC Cancer Agency, Vancouver Coastal Health Research Institute, and the University of British Columbia. Funding is provided through donations to VGH & UBC Hospital Foundation and the BC Cancer Foundation, who, in a joint partnership created a campaign to raise funds to make OvCaRe possible. The OvCaRe team is considered a leader in ovarian cancer research, breaking new ground in better identifying, understanding, and treating this disease. Earlier this year, the team discovered that ovarian cancer was not just one disease, but rather made up of several distinct subtypes.

Sean Sullivan | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>