Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil pigments reveal the colors of ancient sea monsters

09.01.2014
Unique finds of original pigment in fossilised skin from three multi-million-year old marine reptiles attract considerable attention from the scientific community.

The pigment reveals that these animals were, at least partially, dark-coloured in life, which is likely to have contributed to more efficient thermoregulation, as well as providing means for camouflage and UV protection. Researchers at Lund University are among the scientists that made the spectacular discovery.


Preserved pigment in fossilized skin from a leatherback turtle, a mosasaur and an ichthyosaur suggests that these animals were, at least partially, dark-colored in life -- an example of convergent evolution. Note that the leatherback turtle and mosasaur have a dark back and light belly (a color scheme also known as countershading), whereas the ichthyosaur, similar to the modern deep-diving sperm whale, is uniformly dark-colored.

Credit: Illustration by Stefan Sølberg

During the Age of the dinosaurs, huge reptiles, such as mosasaurs and ichthyosaurs, ruled the seas. Previously, scientists could only guess what colours these spectacular animals had; however, pigment preserved in fossilised skin has now been analysed at SP Technical Research Institute of Sweden and MAX IV Laboratory, Lund University, Sweden. The unique soft tissue remains were obtained from a 55 million-year-old leatherback turtle, an 85 million-year-old mosasaur and a 196 million-year-old ichthyosaur. This is the first time that the colour scheme of any extinct marine animal has been revealed.

"This is fantastic! When I started studying at Lund University in 1993, the film Jurassic Park had just been released, and that was one of the main reasons why I got interested in biology and palaeontology. Then, 20 years ago, it was unthinkable that we would ever find biological remains from animals that have been extinct for many millions of years, but now we are there and I am proud to be a part of it", said Johan Lindgren about the discovery of the ancient pigment molecules.

Johan Lindgren is a scientist at Lund University in Sweden, and he is the leader of the international research team that has studied the fossils. Together with colleagues from Denmark, England and the USA, he now presents the results of their study in the scientific journal Nature. The most sensational aspect of the investigation is that it can now be established that these ancient marine reptiles were, at least partially, dark-coloured in life, something that probably contributed to more efficient thermoregulation, as well as providing means for camouflage and protection against harmful UV radiation.

The analysed fossils are composed of skeletal remains, in addition to dark skin patches containing masses of micrometre-sized, oblate bodies. These microbodies were previously interpreted to be the fossilised remains of those bacteria that once contributed to the decomposition and degradation of the carcasses. However, by studying the chemical content of the soft tissues, Lindgren and his colleagues are now able to show that they are in fact remnants of the animals' own colours, and that the micrometre-sized bodies are fossilised melanosomes, or pigment-containing cellular organelles.

"Our results really are amazing. The pigment melanin is almost unbelievably stable. Our discovery enables us to make a journey through time and to revisit these ancient reptiles using their own biomolecules. Now, we can finally use sophisticated molecular and imaging techniques to learn what these animals looked like and how they lived", said Per Uvdal, one of the co-authors of the study, and who works at the MAX IV Laboratory.

Mosasaurs (98 million years ago) are giant marine lizards that could reach 15 metres in body length, whereas ichthyosaurs (250 million years ago) could become even larger. Both ichthyosaurs and mosasaurs died out during the Cretaceous Period, but leatherback turtles are still around today. A conspicuous feature of the living leatherback turtle, Dermochelys, is that it has an almost entirely black back, which probably contributes to its worldwide distribution. The ability of leatherback turtles to survive in cold climates has mainly been attributed to their huge size, but it has also been shown that these animals bask at the sea surface during daylight hours. The black colour enables them to heat up faster and to reach higher body temperatures than had they instead been lightly coloured.

"The fossil leatherback turtle probably had a similar colour scheme and lifestyle as does Dermochelys. Similarly, mosasaurs and ichthyosaurs, which also had worldwide distributions, may have used their darkly coloured skin to heat up quickly between dives", said Johan Lindgren.

If their interpretations are correct, then at least some ichthyosaurs were uniformly dark-coloured in life, unlike most living marine animals. However, the modern deep-diving sperm whale has a similar colour scheme, perhaps as camouflage in a world without light, or as UV protection, given that these animals spend extended periods of time at or near the sea surface in between dives. The ichthyosaurs are also believed to have been deep-divers, and if their colours were similar to those of the living sperm whale, then this would also suggest a similar lifestyle, according to Lindgren.

Johan Lindgren | EurekAlert!
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

nachricht Meet the high-performance single-molecule diode
30.07.2015 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Intracellular microlasers could allow precise labeling of a trillion individual cells

30.07.2015 | Life Sciences

Real-time imaging of lung lesions during surgery helps localize tumors and improve precision

30.07.2015 | Health and Medicine

New study exposes negative effects of climate change on Antarctic fish

30.07.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>