Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formula discovered for longer plant life

23.09.2008
Molecular biologists from Tuebingen have discovered how the growth of leaves and the aging process of plants are coordinated

Plants that grow more slowly stay fresh longer. Scientists at the Max Planck Institute for Developmental Biology in Tuebingen have shown that certain small sections of genes, so-called microRNAs, coordinate growth and aging processes in plants.


Thale cress Arabidopsis thaliana
Photo: Juergen Berger/ Max Planck Institute for Developmental Biology

These microRNAs inhibit certain regulators, known as TCP transcription factors. These transcription factors in turn influence the production of jasmonic acid, a plant hormone. The higher the number of microRNAs present, the lower the number of transcription factors that are active, and the smaller the amount of jasmonic acid, which is produced by the plant. The plant therefore ages more slowly, as this hormone is important for the plant's aging processes. Since the quantity of microRNAs in the plants can be controlled by genetic methods, it may be possible in future to cultivate plants that live longer and grow faster. (PLoS Biology, September 22, 2008)

MicroRNAs are short, single-strand sections of genes that regulate other genes. They do this by binding to complementary sections of the genetic material, thus preventing them from being read and implemented in genetic products. In plants, microRNAs mainly inhibit other regulators, so-called transcription factors. These factors can switch genes on or off by binding to DNA sections, thus activating or blocking them so that either too many or too few proteins are formed. Since proteins control metabolic processes, an imbalance leads to more or less clearly visible changes to the plant.

The scientists in Detlef Weigel's department at the Max Planck Institute for Developmental Biology have investigated the effects that the transcription factors of the TCP family have on the growth and aging of the model plant Arabidopsis thaliana. These transcription factors are regulated by the microRNA miR319.

It was already known that miR319-regulated transcription factors affect the growth of leaves. Using a combination of biochemical and genetic analyses, the researchers have now discovered that the transcription factors also regulate those genes that are essential for the formation of the plant hormone jasmonic acid. The higher the quantity of the microRNA miR319 present in the plant, the lower the number of transcription factors that are produced, and hence the smaller the amount of jasmonic acid, which can be synthesized. These plants have longer growth periods and age more slowly than plants that contain less miR319 and therefore have a shorter growth period but die off sooner.

"Our studies show that the transcription factors, which are regulated by the microRNA miR319, exert a negative influence on the growth of plants, and also lead to premature aging," says Detlef Weigel. The mechanism discovered here is a further milestone in the attempt to explain the relationships of genetic regulation in plants. "Only when we have a better understanding of these processes will we be able to produce plants that have particularly desired properties," says biologist Weigel.

Original publication:
Schommer, C., Palatnik, J.F., Aggarwal, P., Chételat, A., Cubas, P., Farmer, E.E., Nath, U., Weigel, D. (2008): Control of Jasmonate Biosynthesis and Senescence by miR319 Targets. PLoS Biology.

Contact:

Prof. Dr. Detlef Weigel
Tel: +49 (0)7071-601-1410
E-mail: Detlef.Weigel@tuebingen.mpg.de
Dr. Susanne Diederich (Press and PR Department)
Tel: +49 (0)7071-601-333
E-mail: presse@tuebingen.mpg.de
The Max Planck Institute for Developmental Biology conducts basic research in the areas of biochemistry, genetics and evolutionary biology. It has some 325 employees and is located at the Max Planck Campus in Tübingen, Germany. The MPI for Developmental Biology is one of 82 Institutes and research labs of the Max Planck Society for the Promotion of Science e.V.

Dr. Susanne Diederich | Max-Planck-Institut
Further information:
http://eb.mpg.de

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>