Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of the browning pigment melanin decoded

04.07.2016

Researchers in Mainz and Kiel have uncovered the molecular mechanism behind the synthesis of melanin using a technique involving mutation of the relevant enzyme tyrosinase

Melanin is a pigment which is present in almost all life forms and that determines hair and skin color in humans. It helps insects protect themselves against the effects of pathogenic microorganisms and it promotes tissue repair. The dark spots on fruits such as bananas can be attributed to the presence of melanin.


View into the catalytic center of a tyrosinase: The two amino acids Glu235 and Asn240 bind to a water molecule HOH112, which strips a proton (white) away from the substrate (p-tyrosol). The resulting phenolate can now bind to the copper ion (CuA), starting the tyrosinase reaction.

Image/©: Institute of Molecular Biophysics

However, the processes involved in the formation of this pigment were not yet fully understood. Researchers at the universities in Mainz and Kiel have now uncovered the molecular mechanism underlying melanin synthesis using a clever biotechnological procedure. With this, a major gap in our understanding of how this enzyme functions has been closed.

At the core of the mechanism is the activity of the enzyme tyrosinase. This discovery opens the door to the development of numerous applications in the cosmetics and food industries as well as in environmental technology and medicine.

Tyrosinase initiates the melanin synthesis process. "We previously did not fully understand the role played by this enzyme. In fact, we knew more about the activities of catechol oxidase, a related but less potent enzyme that is also involved in the synthesis of melanin," explained Heinz Decker, Director of the Institute of Molecular Biophysics at Johannes Gutenberg University Mainz (JGU).

Much research on the cause for the difference in the reactivity of tyrosinase and catechol oxidase has been conducted over the past few decades, but little success had been achieved to date.

Following up on clues from reported research undertaken by an Israeli team led by Dr. A. Fishman, Professor Heinz Decker and Even Solem of Mainz University and Professor Felix Tuczek of Kiel University decided to conduct experiments to discover the mechanism responsible for tyrosinase activity. They first isolated a catechol oxidase from Riesling wine leaves and converted it to a tyrosinase by means of a biotechnological process involving targeted mutation.

They found that the difference in reactivity is attributable to two amino acids, a highly conserved glutamic acid and asparagine that are located near the catalytic center. They form such a strong bond with a specific water molecule within the protein matrix that the water molecule undergoes a charge displacement.

This makes one side strongly negative, so that it strips a positive proton from a nearby monophenol. This then activates tyrosinase which converts the monophenols to chemically very reactive substances called quinones, which combine on their own to form melanin. However, in the absence of asparagine or a water molecule in the protein, only catechol oxidase is present and no tyrosinase.

This discovery is a major breakthrough in the understanding of the catalytic role played by tyrosinase in the synthesis of melanin. This means that in the future it will be possible to make systematic improvements in the processes of stimulation, inhibition, and modification as well as in biotechnological methods employed in medicine, cosmetics production, and in environmental research, with the help of genetically-based approaches.

"In addition, we have gained further insights into the functioning of copper in the body," concluded Decker. The results of the study have been published in the journal Angewandte Chemie International Edition.

Publication:
Even Solem, Felix Tuczek, Heinz Decker
Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference
Angewandte Chemie International Edition, 15 January 2016
DOI: 10.1002/anie.201508534

Image:
http://www.uni-mainz.de/bilder_presse/10_biophysik_tyrosinase.jpg
View into the catalytic center of a tyrosinase: The two amino acids Glu235 and Asn240 bind to a water molecule HOH112, which strips a proton (white) away from the substrate (p-tyrosol). The resulting phenolate can now bind to the copper ion (CuA), starting the tyrosinase reaction.
Image/©: Institute of Molecular Biophysics

Further information:
Professor Dr. Heinz Decker
Institute of Molecular Biophysics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23570
fax +49 6131 39-23557
e-mail: hdecker@uni-mainz.de
http://www.biophysik.uni-mainz.de/

Weitere Informationen:

http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508534/full

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>