Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of the browning pigment melanin decoded

04.07.2016

Researchers in Mainz and Kiel have uncovered the molecular mechanism behind the synthesis of melanin using a technique involving mutation of the relevant enzyme tyrosinase

Melanin is a pigment which is present in almost all life forms and that determines hair and skin color in humans. It helps insects protect themselves against the effects of pathogenic microorganisms and it promotes tissue repair. The dark spots on fruits such as bananas can be attributed to the presence of melanin.


View into the catalytic center of a tyrosinase: The two amino acids Glu235 and Asn240 bind to a water molecule HOH112, which strips a proton (white) away from the substrate (p-tyrosol). The resulting phenolate can now bind to the copper ion (CuA), starting the tyrosinase reaction.

Image/©: Institute of Molecular Biophysics

However, the processes involved in the formation of this pigment were not yet fully understood. Researchers at the universities in Mainz and Kiel have now uncovered the molecular mechanism underlying melanin synthesis using a clever biotechnological procedure. With this, a major gap in our understanding of how this enzyme functions has been closed.

At the core of the mechanism is the activity of the enzyme tyrosinase. This discovery opens the door to the development of numerous applications in the cosmetics and food industries as well as in environmental technology and medicine.

Tyrosinase initiates the melanin synthesis process. "We previously did not fully understand the role played by this enzyme. In fact, we knew more about the activities of catechol oxidase, a related but less potent enzyme that is also involved in the synthesis of melanin," explained Heinz Decker, Director of the Institute of Molecular Biophysics at Johannes Gutenberg University Mainz (JGU).

Much research on the cause for the difference in the reactivity of tyrosinase and catechol oxidase has been conducted over the past few decades, but little success had been achieved to date.

Following up on clues from reported research undertaken by an Israeli team led by Dr. A. Fishman, Professor Heinz Decker and Even Solem of Mainz University and Professor Felix Tuczek of Kiel University decided to conduct experiments to discover the mechanism responsible for tyrosinase activity. They first isolated a catechol oxidase from Riesling wine leaves and converted it to a tyrosinase by means of a biotechnological process involving targeted mutation.

They found that the difference in reactivity is attributable to two amino acids, a highly conserved glutamic acid and asparagine that are located near the catalytic center. They form such a strong bond with a specific water molecule within the protein matrix that the water molecule undergoes a charge displacement.

This makes one side strongly negative, so that it strips a positive proton from a nearby monophenol. This then activates tyrosinase which converts the monophenols to chemically very reactive substances called quinones, which combine on their own to form melanin. However, in the absence of asparagine or a water molecule in the protein, only catechol oxidase is present and no tyrosinase.

This discovery is a major breakthrough in the understanding of the catalytic role played by tyrosinase in the synthesis of melanin. This means that in the future it will be possible to make systematic improvements in the processes of stimulation, inhibition, and modification as well as in biotechnological methods employed in medicine, cosmetics production, and in environmental research, with the help of genetically-based approaches.

"In addition, we have gained further insights into the functioning of copper in the body," concluded Decker. The results of the study have been published in the journal Angewandte Chemie International Edition.

Publication:
Even Solem, Felix Tuczek, Heinz Decker
Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference
Angewandte Chemie International Edition, 15 January 2016
DOI: 10.1002/anie.201508534

Image:
http://www.uni-mainz.de/bilder_presse/10_biophysik_tyrosinase.jpg
View into the catalytic center of a tyrosinase: The two amino acids Glu235 and Asn240 bind to a water molecule HOH112, which strips a proton (white) away from the substrate (p-tyrosol). The resulting phenolate can now bind to the copper ion (CuA), starting the tyrosinase reaction.
Image/©: Institute of Molecular Biophysics

Further information:
Professor Dr. Heinz Decker
Institute of Molecular Biophysics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23570
fax +49 6131 39-23557
e-mail: hdecker@uni-mainz.de
http://www.biophysik.uni-mainz.de/

Weitere Informationen:

http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508534/full

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>