Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Formation of the browning pigment melanin decoded

04.07.2016

Researchers in Mainz and Kiel have uncovered the molecular mechanism behind the synthesis of melanin using a technique involving mutation of the relevant enzyme tyrosinase

Melanin is a pigment which is present in almost all life forms and that determines hair and skin color in humans. It helps insects protect themselves against the effects of pathogenic microorganisms and it promotes tissue repair. The dark spots on fruits such as bananas can be attributed to the presence of melanin.


View into the catalytic center of a tyrosinase: The two amino acids Glu235 and Asn240 bind to a water molecule HOH112, which strips a proton (white) away from the substrate (p-tyrosol). The resulting phenolate can now bind to the copper ion (CuA), starting the tyrosinase reaction.

Image/©: Institute of Molecular Biophysics

However, the processes involved in the formation of this pigment were not yet fully understood. Researchers at the universities in Mainz and Kiel have now uncovered the molecular mechanism underlying melanin synthesis using a clever biotechnological procedure. With this, a major gap in our understanding of how this enzyme functions has been closed.

At the core of the mechanism is the activity of the enzyme tyrosinase. This discovery opens the door to the development of numerous applications in the cosmetics and food industries as well as in environmental technology and medicine.

Tyrosinase initiates the melanin synthesis process. "We previously did not fully understand the role played by this enzyme. In fact, we knew more about the activities of catechol oxidase, a related but less potent enzyme that is also involved in the synthesis of melanin," explained Heinz Decker, Director of the Institute of Molecular Biophysics at Johannes Gutenberg University Mainz (JGU).

Much research on the cause for the difference in the reactivity of tyrosinase and catechol oxidase has been conducted over the past few decades, but little success had been achieved to date.

Following up on clues from reported research undertaken by an Israeli team led by Dr. A. Fishman, Professor Heinz Decker and Even Solem of Mainz University and Professor Felix Tuczek of Kiel University decided to conduct experiments to discover the mechanism responsible for tyrosinase activity. They first isolated a catechol oxidase from Riesling wine leaves and converted it to a tyrosinase by means of a biotechnological process involving targeted mutation.

They found that the difference in reactivity is attributable to two amino acids, a highly conserved glutamic acid and asparagine that are located near the catalytic center. They form such a strong bond with a specific water molecule within the protein matrix that the water molecule undergoes a charge displacement.

This makes one side strongly negative, so that it strips a positive proton from a nearby monophenol. This then activates tyrosinase which converts the monophenols to chemically very reactive substances called quinones, which combine on their own to form melanin. However, in the absence of asparagine or a water molecule in the protein, only catechol oxidase is present and no tyrosinase.

This discovery is a major breakthrough in the understanding of the catalytic role played by tyrosinase in the synthesis of melanin. This means that in the future it will be possible to make systematic improvements in the processes of stimulation, inhibition, and modification as well as in biotechnological methods employed in medicine, cosmetics production, and in environmental research, with the help of genetically-based approaches.

"In addition, we have gained further insights into the functioning of copper in the body," concluded Decker. The results of the study have been published in the journal Angewandte Chemie International Edition.

Publication:
Even Solem, Felix Tuczek, Heinz Decker
Tyrosinase versus Catechol Oxidase: One Asparagine Makes the Difference
Angewandte Chemie International Edition, 15 January 2016
DOI: 10.1002/anie.201508534

Image:
http://www.uni-mainz.de/bilder_presse/10_biophysik_tyrosinase.jpg
View into the catalytic center of a tyrosinase: The two amino acids Glu235 and Asn240 bind to a water molecule HOH112, which strips a proton (white) away from the substrate (p-tyrosol). The resulting phenolate can now bind to the copper ion (CuA), starting the tyrosinase reaction.
Image/©: Institute of Molecular Biophysics

Further information:
Professor Dr. Heinz Decker
Institute of Molecular Biophysics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-23570
fax +49 6131 39-23557
e-mail: hdecker@uni-mainz.de
http://www.biophysik.uni-mainz.de/

Weitere Informationen:

http://onlinelibrary.wiley.com/wol1/doi/10.1002/anie.201508534/full

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Cardiolinc™: an NPO to personalize treatment for cardiovascular disease patients
14.12.2017 | Luxembourg Institute of Health

nachricht How the kidneys produce concentrated urine
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>