Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forgetting Is Actively Regulated

14.03.2014

In order to function properly, the human brain requires the ability not only to store but also to forget: Through memory loss, unnecessary information is deleted and the nervous system retains its plasticity. A disruption of this process can lead to serious mental disorders. Basel scientists have now discovered a molecular mechanism that actively regulates the process of forgetting. The renowned scientific journal “Cell” has published their results.

The human brain is build in such a way, that only necessary information is stored permanently - the rest is forgotten over time. However, so far it was not clear if this process was active or passive. Scientists from the transfaculty research platform Molecular and Cognitive Neurosciences (MCN) at the University of Basel have now found a molecule that actively regulates memory loss.


The nervous system of the ringworm C. elegans

(Illustration: MCN)

The so-called musashi protein is responsible for the structure and function of the synaptic connections of the brain, the place where information is communicated from one neuron to the next. 

Using olfactory conditioning, the researchers Attila Stetak and Nils Hadziselimovic first studied the learning abilities of genetically modified ringworms (C.elegans) that were lacking the musashi protein. The experiments showed that the worms exhibited the same learning skills as unmodified animals.

However, with extended duration of the experiment, the scientists discovered that the mutants were able to remember the new information much better. In other words: The genetically modified worms lacking the musashi protein were less forgetful. 

Forgetting is no coincidence 

Further experiments showed that the protein inhibits the synthesis of molecules responsible for the stabilization of synaptic connections. This stabilization seems to play an important role in the process of learning and forgetting.

The researchers identified two parallel mechanisms: One the one hand, the protein adducin stimulates the growth of synapses and therefore also helps to retain memory; on the other hand, the musashi protein actively inhibits the stabilization of these synapses and thus facilitates memory loss. Therefore, it is the balance between these two proteins that is crucial for the retention of memories. 

Forgetting is thus not a passive but rather an active process and a disruption of this process may result in serious mental disorders. The musashi protein also has interesting implications for the development of drugs trying to prevent abnormal memory loss that occurs in diseases such as Alzheimer’s. Further studies on the therapeutic possibilities of this discovery will be done. 

The Transfaculty Research Platform MCN 

The Transfaculty Research Platform MCN is a joint endeavor of the Faculty of Psychology at the University of Basel and the Psychiatric University Clinics Basel. Its goal is to advance research on the neurobiological underpinnings of human emotional and cognitive processes and to contribute to the development of novel treatment options for neuropsychiatric disorders. The platform is jointly led by Prof. Dominique de Quervain and Prof. Andreas Papassotiropoulos.

Original source
Hadziselimovic, N., Vukojevic, V., Peter, F., Milnik, A., Fastenrath, M., Fenyves, B., Hieber, P., Demougin, P., Vogler, C., de Quervain, D.J.F., Papassotiropoulos, A. & Stetak, A.
Forgetting is regulated via Musashi-mediated translational control of the Arp2/3 complex.
Cell, online.

Further information
Prof. Dr. med. Andreas Papassotiropoulos, Transfaculty Research Platform «Molecular and Cognitive Neurosciences», Faculty of Psychology at the University of Basel and the Psychiatric University Clinics Basel, phone +41 (0)61 267 05 99, email: andreas.papas@unibas.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>