Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New forensic technique gives clues about sharks from bite damage

02.12.2009
Hit-and-run attacks by sharks can be solved with a new technique that identifies the culprits by the unique chomp they put on their victims, according to a University of Florida researcher and shark expert.

In a method analogous to analyzing human fingerprints, scientists can make identifications by precisely comparing shark bites to the jaws and teeth of the powerful predators, said George Burgess, director of the International Shark Attack File, which is housed at UF’s Florida Museum of Natural History.

“Every time we investigate a shark attack one of the pieces of information that we want to have is what species was involved and what size it was,” he said. “Because I’ve been looking at shark attack victims for 30 years I can estimate what did the damage, but I have never been able to actually prove it.”

Now scientists can say with a degree of certainty whether the beast was a 14-foot tiger shark or a 9-foot bull shark, a distinction that has unforeseen emotional, ecological and even monetary benefits, said Burgess, who collaborated with researchers from the University of South Florida. Their findings are published in the November issue of Marine Biology.

“There’s a psychological need for many shark attack victims to know what bit them,” Burgess said. “One of the few things shark attack victims have going for them after a bite is bragging rights and the bragging rights include knowing what did the damage.”

Because of the hype surrounding shark attacks, off-the-cuff estimates of shark size are often exaggerated, he said. “This will give an actual basis for determining what species was involved and the size, not that that’s going to affect the size claimed by the victim in a bar,” he said.

Using dried shark jaws from museums and private collections, the researchers were able to identify bite patterns of particular sizes and species of sharks by measuring jaw circumference and the distance between the six frontal teeth on the top and lower jaws, Burgess said. They experimented on 10 to 24 sets of shark jaws for each of the 14 species they analyzed. The technique works not only on human and animal tissue, but also on inanimate objects like surfboards and underground cable lines, he said.

The ability to make predictions from bite patterns is important to understanding the behavioral underpinnings of shark attacks and their prey habits, said lead researcher Dayv Lowry, a biologist with the Washington Department of Fish and Wildlife, who did the work as a graduate student at the University of South Florida.

“Often someone will send us a picture of a dolphin carcass or a sea turtle and want to know what kind of shark bit it,” Lowry said. “Knowing that it’s a large tiger shark, for example, would help us figure out what large tiger sharks like to eat and how they attack their prey. If an animal or person has been bitten on the rear end, then we know these sharks are likely to sneak up to get their prey instead of facing the victims.”

Being able to determine what size shark attacked people in certain geographic areas such as South Africa where offshore nets are used to protect swimmers is valuable because it may influence the size mesh that is used, Lowry said. With larger sharks, beaches can get by with bigger mesh sizes, which are cheaper and less environmentally intrusive, he said.

The technique also has the potential to save thousands of dollars in damages caused by the sharks’ penchant for attacking underwater electronic equipment, which includes intercontinental telephone wires, top-secret communication lines between government officials and sensors companies use to uncover oil fields, Burgess said.

Sharks are equipped with organs on the underside of their snouts – gel filled pits called ampullae of Lorenzini – that allow them to detect electromagnetic fields from their intended food, Burgess said. Unfortunately, sharks often do not distinguish between the signals sent by prey and equipment, which can be ruined by water seeping in through the bite marks, he said.

“That’s one thing that makes them special — they can sense electro-magnetic fields around their prey items,” he said.

Laying cable lines at the bottom of the ocean is extremely expensive, and having to remove a piece, fix it and install it again adds to the cost, Burgess said. “Knowing that a certain species of shark did the damage is useful because in the future cable lines can be placed in a different location, outside the path of that particular shark’s area of distribution,” he said.

And the ability to determine what size shark was involved in an attack by the size and configuration of its bite marks could result in the installation of a heavier seal designed to withstand damage from that kind of shark, he said.

Credits

Writer
Cathy Keen, ckeen@ufl.edu, 352-392-0186
Source
George Burgess, gburgess@flmnh.ufl.edu, 352-392-2360

George Burgess | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>