Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Forelimb bone data predicts predator style

01.07.2014

At the start of their research, paleobiologists Christine Janis and Borja Figueirido simply wanted to determine the hunting style of an extinct marsupial called Thylacine (also known as the "marsupial wolf" or the "Tasmanian tiger").

In the end, the Australian relic, which has a very dog-like head but with both cat- and dog-like features in the skeleton, proved to be uniquely unspecialized, but what emerged from the effort is a new classification system that can capably predict the hunting behaviors of mammals from measurements of just a few forelimb bones.


Brown University researchers have devised a dataset of forelimb bone measurements that can be used to classify the hunting style of mammalian predators. The now-extinct thylacine (front), shown juxtaposed with its still extant Australian rival the dingo, had forelimb anatomy that was curiously unspecialized for any particular hunting style.

Credit: Image courtesy of Carl Buell

"We realized what we are also doing was providing a dataset or a framework whereby people could look at extinct animals because it provides a good categorization of extant forms," said Janis, professor of ecology and evolutionary biology at Brown University, and co-author of a paper describing the framework in the Journal of Morphology.

For example, the scapulas (shoulder blades) of leopards (ambush predators who grapple with rather than chase their prey) and those of cheetahs (pursuit predators who chase their prey over a longer distance) measure very differently. So do their radius (forearm) bones. The shapes of the bones, including areas where muscles attach, place the cheetahs with other animals that evolved for chasing (mainly dogs), and the leopards with others that evolved for grappling (mostly other big cats).

... more about:
»animals »forelimb »measurements »species »thylacine

"The main differences in the forelimbs really reflect adaptations for strength versus adaptations for speed," Janis said.

In plots of the data in the paper, cheetahs and African hunting dogs appear to be brethren by their scapular proportions even though one is a cat and one is a dog. But the similar scapulas don't lie: both species are acknowledged by zoologists to be pursuit predators.

In all, Janis and Figueirido of the Universidad de Malaga in Spain made 44 measurements on five forelimb bones in 62 specimens of 37 species of ranging from the Arctic fox to the thylacine. In various analyses the data proved helpful in sorting out the behaviors of their bones' owners.

Given measurements from all of the forelimb bones of an animal, for example, they could accurately separate ambush predators from pursuit predators 100 percent of the time and ambush predators from pouncing predators 95 percent of the time. Results were similar for analyses based on the humerus (upper arm bone). They were always able to make correct classifications between the three predator styles more than 70 percent of the time, even with just one kind of bone.

The elusive thylacine

The thylacine has not been known from mainland Australia in recorded human history, and by official accounts it disappeared from the Australian island of Tasmania by 1936 (although some locals still believe they may be around). In a similar vein, the beasts evaded Janis and Figueirido's attempts at a neat classification of their mode of carnivory. By some bones they were ambushers. By others they were pursuers. In the end, they weren't anything but thylacines.

Janis notes that they could do just fine as generalists, given their relative lack of competition. Historically Australia has hosted less predator diversity than the Serengeti, for example.

"If you are one the few predators in the ecosystem, there's not a lot of pressure to be specialized," she said.

In the thylacine's case the evidence from forelimb bone measurements supports their somewhat unusual status by the standards of the rest of predatory mammals as generalists. For other extinct predators, the framework will support other conclusions based on these same standards.

"One thing you tend to see is that people want to make extinct animals like living ones, so if something has a wolf-like head with a long snout as does the thylacine, although its skull is more delicate than that of a wolf, then people want to make it into a wolf-like runner," she said. "But very few extinct animals actually are as specialized as modern day pursuit predators. People reconstruct things in the image of the familiar, which may not reflect reality."

But Janis said she hopes the framework will provide fellow paleobiologists with an empirical basis for guiding those determinations.

###

The Bushnell Foundation supported the study with a research and teaching grant. The Museum of Comparative Zoology at Harvard University, the American Museum of Natural History in New York, and Australia's Museum Victoria and Queensland Museum provided access to specimens for measurement.

David Orenstein | Eurek Alert!

Further reports about: animals forelimb measurements species thylacine

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>