Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For a better understanding of ash dieback: Scientists of the TU Braunschweig discover phytotoxic

20.03.2014

Scientists of the Technical University of Braunschweig made a significant contribution to the understanding of the European Ash dieback by isolating a previously unknown substance from the pathogen and investigating its destructive character. The metabolite proved to have a germination inhibiting effect towards ash and causes necroses in the plant tissue. The results of their studies were published in the current issue of the journal „Angewandte Chemie“.

The pathogen of ash dieback, the fungus Hymenoscyphus pseudoalbidus, was discovered only a few years ago. This fungus currently invades from Asia and causes effects that are visible since almost two decades.


Evidence of the harmful effect of the lactone of germinated seeds

TU Braunschweig

Since the 1990’s a significant part of the ash population in Europe was devastated by the fungus. An important contribution for the revalation of the pathogenicity of this organism was now made by scientists from the Institutes of Organic Chemistry and Microbiology from the TU Braunschweig. 

The German scientists around Dr. Jeroen Dickschat and Dr. Barbara Schulz investigated the largely unknown secondary metabolism of the pathogenic fungus. They discovered a volatile lactone (3,4-dimethylpentan-4-olide) in the headspace of agar plate cultures of the fungus for which they used special equipment for headspace analysis (closed-loop stripping apparatus). The Institute of Organic Chemistry is one of the few institutions that have access to and experience with this method, explains Dr. Dickschat.

Biologists then testet the bioactivity of the volatile lactone against seeds of the ash tree. The lactone exhibited a strong germination inhibition towards ash seeds and caused necroses on the seedlings. By this agressive property, the fungus destroys its own host and habitat, comments Dr. Dickschat. The scientists came to the conclusion that only the European Ash is attacked by the lactone, whereas its Japanese sister species seems to be immune.

„We assume that the phytotoxic lactone plays a main role in the pathogenicity of the fungus“, says Dr. Dickschat, „but there are likely more factors involved that may originate from the plant itself.“ The scientists from Braunschweig hope to lay the ground for further work to understand the pathogenicity mechanisms of H. pseudoalbidus and probably pave the way to a control of the disease.

Publication
C. A. Citron, C. Junker, B. Schulz, J. S. Dickschat, Ein flüchtiges Lacton aus Hymenoscyphus pseudoalbidus, Pathogen des Europäischen Eschensterbens, inhibiert die Keimung seines Wirtes, Angew. Chem. 2014, DOI: 10.1002/ange.201402290.

C. A. Citron, C. Junker, B. Schulz, J. S. Dickschat, A Volatile Lactone of Hymenoscyphus pseudoalbidus, Pathogen of European Ash Dieback, Inhibits Host Germination, Angew. Chem. Int. Ed. 2014, DOI: 10.1002/anie.201402290.

Contact
PD Dr. Jeroen S. Dickschat
Institute of Organic Chemistry
Technical University of Braunschweig
Hagenring 30
D-38106 Braunschweig
Germany
Phone: +49 (531) 391-5264
E-Mail: j.dickschat@tu-bs.de
http://www.oc.tu-bs.de/dickschat

Weitere Informationen:

http://blogs.tu-braunschweig.de/presseinformationen/p=6791

Stephan Nachtigall | idw - Informationsdienst Wissenschaft

Further reports about: Organic fungus metabolism pathogenicity phytotoxic seeds volatile

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>