Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food odor enhances male flies’ attractiveness

01.11.2017

When female flies smell their favorite food, they become more receptive to courting males.

“A way to someone’s heart is through their stomach” is a popular saying. But it is not only in humans that romance and a good dinner seem to go together well. In the vinegar fly Drosophila melanogaster, scientists from the Max Planck Institute for Chemical Ecology have now even identified the respective underlying neuronal mechanism in the fly’s brain. If vinegar is nearby, male flies are perceived as more attractive and the receptivity of virgin females towards courting males is increased.


In virgin Drosophila flies Vinegar odor intensifies the effect of a male sex pheromone. Activation of the glomerulus DA1 is enhanced, the females become more receptive towards courting males.

Silke Sachse / Max Planck Institute for Chemical Ecology

Vinegar odor boosts the perception of a male sex pheromone in the brain of unmated female Drosophila melanogaster flies, as a team of scientists from the Department of Evolutionary Neuroethology has now discovered.

The researchers were able to identify the underlying neuronal mechanism in the brain of Drosophila flies. Previous experiments had revealed that the male pheromone cis-vaccenyl acetate activates the glomerulus DA1 in the brains of female flies. Glomeruli are spherical functional units in the antennal lobe, the olfactory center in the fly brain.

“We were able to show in our study that vinegar odor enhances the reactions of female flies to the male sex pheromone significantly. Both odors together intensify the activation of DA1,” explains Silke Sachse, head of the “Olfactory Coding” research group. The scientists observed this effect only in unmated virgin flies; it was absent in males and mated females.

Analyzing the underlying neural mechanisms, the neurobiologists were able to elucidate how the odor signals were processed in the fly brain and determine which brain areas were activated. They used functional imaging techniques to monitor and visualize brain activity induced by the sex pheromone, by vinegar, and by both odors together.

Transgenic fly lines were crucial for the experiments. In these flies, selected electrical synapses -- connections between specific classes of nerve cells -- had been silenced. The various lines helped researchers pinpoint the neurons involved in signal transfer and to precisely locate the neuronal site of the interaction of two odors.

“We were able to show that the enhanced activation of the glomerulus DA1 is mediated by a so-called “lateral excitation” in a particular class of neurons. Different neighboring glomeruli in the brain respond to the odor of vinegar, and the excitation from those glomeruli is transmitted to DA1 via electrical synapses,” says first author, Sudeshna Das, who came to the Max Planck Institute as a fellow from the Alexander von Humboldt Foundation.

The male sex pheromone, in contrast to the vinegar, activates DA1 directly through the specialized olfactory receptor Or67d. Thus both odors activate the same olfactory glomerulus, just through different neuronal pathways. Together, the scents evoke an enhanced behavioral response in virgin females, increasing their willingness to mate.
.
From an ecological perspective, this mechanism is extremely important, because it accelerates mating when sufficient food is available for the females and for their offspring. “We were surprised that this strong response enhancement of the pheromone response by vinegar is completely absent in mated female flies. However, after discovering the behavioral relevance for courtship we realized that this effect only makes sense in virgin females,” says Silke Sachse.

The increased willingness to mate in the presence of sufficient food is important with respect to reproductive success, which is probably why this rare synergistic interaction between the responses to two different odors has evolved. “A synergistic interaction of two odors is extremely rare and has hardly been observed so far. The more general rule is that different odors rather inhibit each other and lead to mixture inhibition which allows the olfactory system not to become saturated when more than one odor is perceived,” Silke Sachse emphasizes.

The results have also further ecological relevance: “In nature, female flies only perceive little amounts of the male sex pheromone. From an evolutionary point of view it seems useful that they evolved a mechanism which enhances the effect of the pheromone without the males having to release higher concentrations. If you consider that Drosophila flies have a pretty short life span during which they are constantly threatened by predators, infections or toxic food, accelerated mating and reproduction is very important for their survival,” says Sudeshna Das. [AO/KG]

Original Publication:
Das, S., Trona, F., Khallaf, M. A., Schuh, E., Knaden, M., Hansson, B. S.. Sachse, S. (2017). Electrical synapses mediate synergism between pheromone and food odors in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, Early Edition, DOI: 10.1073/pnas.1712706114
http://dx.doi.org/10.1073/pnas.1712706114

Further Information:
Dr. Silke Sachse, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1405, E-Mail ssachse@ice.mpg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2017.html

Weitere Informationen:

Department of Evolutionary Neuroethology http://www.ice.mpg.de/ext/index.php?id=evolutionary-neuroethology&L=0

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>