Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food-borne bacteria causes potentially fatal heart infection

27.01.2011
Researchers at the University of Illinois at Chicago College of Medicine have found that particular strains of a food-borne bacteria are able to invade the heart, leading to serious and difficult-to-treat heart infections.

The study is available online in the Journal of Medical Microbiology.

The bacteria Listeria monocytogenes is commonly found in soft cheeses and chilled ready-to-eat products. For healthy individuals, listeria infections are usually mild, but for susceptible individuals and the elderly, infection can result in serious illness, usually associated with the central nervous system, the placenta and the developing fetus.

About 10 percent of serious listeria infections involve a cardiac infection, according to Nancy Freitag, associate professor of microbiology and immunology and principle investigator on the study. These infections are difficult to treat, with more than one-third proving fatal, but have not been widely studied and are poorly understood.

Freitag and her colleagues obtained a strain of listeria that had been isolated from a patient with endocarditis, or infection of the heart.

"This looked to be an unusual strain, and the infection itself was unusual," she said. Usually with endocarditis there is bacterial growth on heart valves, but in this case the infection had invaded the cardiac muscle.

The researchers were interested in determining whether patient predisposition led to heart infection or whether something different about the strain caused it to target the heart.

They found that when they infected mice with either the cardiac isolate or a lab strain, they found 10 times as much bacteria in the hearts of mice infected with the cardiac strain. In the spleen and liver, organs that are commonly targeted by listeria, the levels of bacteria were equal in both groups of mice.

Further, the researchers found that while the lab-strain-infected group often had no heart infection at all, 90 percent of the mice infected with the cardiac strain had heart infections. The researchers obtained more strains of listeria, for a total of 10, and did the same experiment. They found that only one other strain also seemed to also target the heart.

"They infected the heart of more animals and were always infecting heart muscle and always in greater number," Freitag said. "Some strains seem to have this enhanced ability to target the heart for infection."

Freitag's team used molecular genetics and cardiac cell cultures to explore what was different about these two strains.

"These strains seem to have a better ability to invade cardiac cells," she said. The results suggest that these cardiac-associated strains display modified proteins on their surface that enable the bacteria to more easily enter cardiac cells, targeting the heart and leading to bacterial infection.

"Listeria is actually pretty common in foods," said Freitag. "And because it can grow at refrigerated temperatures, as foods are being produced with a longer and longer shelf life, listeria infection may become more common. In combination with an aging population that is more susceptible to serious infection, it's important that we learn all we can about these deadly infections."

The study was supported by a Public Health Service Grant; by Public Health Service post-doctoral training fellowships; and an American Heart Association Predoctoral Fellowship.

UIC graduate student Francis Alonzo III was first author of the study. Linda Bobo of Washington University School of Medicine in St. Louis and Daniel Skiest of Baystate Medical Center-Tufts University School of Medicine in Springfield, Mass., also contributed to the study.

For more information about UIC, visit www.uic.edu

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>