Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food allergy-related disorder linked to master allergy gene

08.03.2010
WHAT: Scientists have identified a region of a human chromosome that is associated with eosinophilic esophagitis (EoE), a recently recognized allergic disease. People with EoE frequently have difficulty eating or may be allergic to one or more foods. This study further suggests that a suspected so-called master allergy gene may play a role in the development of this rare but debilitating disorder.

EoE is characterized by inflammation and accumulation of a specific type of immune cell, called an eosinophil, in the esophagus. Symptoms of EoE vary with age: In young children a major symptom is spitting up food, while in older children and adults, the condition may cause food to become stuck in the esophagus.

These symptoms may improve when a person with EoE is restricted to a liquid formula diet that contains no protein allergens or is placed on a diet that lacks six highly allergenic foods (milk, soy, eggs, wheat, peanut and seafood). EoE is not the same as more common food allergies, which also have serious consequences. Little is known about what causes EoE, but the disease runs in families suggesting that specific genes may be involved.

Investigators led by Marc Rothenberg, M.D., Ph.D., at Cincinnati Children's Medical Center Hospital, and supported by the National Institute of Allergy and Infectious Diseases and the National Institute of Diabetes and Digestive and Kidney Diseases, both part of the National Institutes of Health, performed a genome-wide association analysis in children with EoE and healthy children. This type of study detects markers of genetic variation across the entire human genome and allows researchers to zero in on a region of a chromosome to identify genes that influence health and the development of disease.

In this study, the investigators identified changes in genes within a region on chromosome 5 that were highly associated with EoE. One of the genes in this region encodes a protein called thymic stromal lymphopoietin (TSLP). When the investigators measured the expression levels of this gene in children with EoE, they found it was more highly expressed than in children without the disorder. This result suggests that TSLP plays some role in EoE.

TSLP is made by epithelial cells, which line internal and external surfaces of the body. It has already been described as a master switch that may turn on other allergic diseases, such as asthma and atopic dermatitis (eczema).

Future research is needed to determine if these findings might lead to a genetic test for TSLP and whether drugs that block the production or function of TSLP might be useful in treating EoE.

ARTICLE: ME Rothenberg et al. Common variants at 5q22 associate with pediatric eosinophilic esophagitis. Nature Genetics DOI: 10.1038/ng.547 (2010).

WHO: Matthew Fenton, Ph.D., Chief, Asthma, Allergy and Inflammation Branch, NIAID Division of Allergy, Immunology and Transplantation, is available to comment on this paper.

CONTACT: To schedule interviews, please contact Julie Wu, 301-402-1663, wujuli@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at www.niaid.nih.gov.

NIDDK, part of NIH, conducts and supports basic and clinical research and research training on some of the most common, severe and disabling conditions affecting Americans. The Institute's research interests include: diabetes and other endocrine and metabolic diseases; digestive diseases, nutrition, and obesity; and kidney, urologic and hematologic diseases. For more information, visit www.niddk.nih.gov.

The National Institutes of Health (NIH)—The Nation's Medical Research Agency—includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Julie Wu | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>