Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Food can affect a cell in the same way hormones do

08.12.2008
VIB researchers connected to the Katholieke Universiteit Leuven have discovered an important new mechanism with which cells can detect nutrients.

This happens in the same way - and with the same effects – as when cells receive a message from a hormone. This finding can teach us more about how food affects our body; and, furthermore, it can form the basis for new candidate targets for medicines.

Receptors
Every living thing is composed of cells - and, via receptor proteins on their outer surface, cells communicate with each other and with the outside world. Receptors are found on skin cells (pain and pressure receptors, for example) as well as on the cells of other tissues and organs. By binding with certain substances, such as hormones, the receptors pick up signals from outside the cell. They transmit the signal to the interior of the cell, where it can induce all kinds of reactions. Receptors can be stimulated or blocked to evoke or prevent a certain effect. Foreign substances, such as medicines, can also bind to a receptor and cause a particular effect. For some time now, scientists have suspected that cells can also detect the presence of food via one or another receptor - but no one has known how that happens.
Sensing and transporting
In addition to receptors, cells also have transport proteins that can carry nutrients through the cell membrane to the inside of the cell, where they can be put to use. Furthermore so-called ‘transceptors’ have been discovered that sense and transport food simultaneously.

Now, VIB researcher Griet Van Zeebroeck and her colleagues in Johan Thevelein’s group have shown for the first time how one of these transceptors (called Gap1) works. Gap1 transports amino acids (a protein’s building blocks) to the inside of a cell. At the same time, via the same mechanisms that cells use to transmit signals from hormones, Gap1 sends the cell a signal that food is present. The transceptor apparently uses the same binding site to recognize the food as it uses to grasp the food for transport.

Yeast vs. humans
This research has been conducted on yeast cells, as yeast (Saccharomyces cerevisiae) is a micro-organism that is used as a model organism. Yeast cells are surprisingly similar to human cells, but they are easier to cultivate and manipulate. Very often, proteins that are found in yeast - transport proteins and receptors, for example - have similar variants in human cells.
Importance of this research
This research can have important implications for the development of medicines. About half of all medicines are transmitted to cells via receptors, because receptors are located on the cells’ exterior surface and are therefore the best targets for medicines. If these newly discovered transceptors are also found in humans, then an unexpected new group of candidate targets for medicines becomes available - offering promising possibilities for the treatment of metabolic diseases.

Sooike Stoops | alfa
Further information:
http://www.vib.be

Further reports about: Food Gap1 Receptors VIA VIB hormone human cells proteins receptor skin cell transceptor

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>