Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to fold proteins?

25.11.2011
For parvulins, one group of folding helper enzymes, new answers are at hand given by scientists from the Centre for Medical Biotechnology (ZMB) of University of Duisburg-Essen (UDE), Germany. Drs Peter Bayer and Jonathan W Mueller succeeded in visualising single hydrogen atoms within the core of highly diffracting crystals of the parvulin protein Par14.

Proteins are among the most important building blocks of life. To function properly within the body, their amino acid sequence needs to be folded into a defined three-dimensional structure within each cell. When this highly complex folding process fails, severe diseases such as cancer, Alzheimer’s or Parkinson’s can be the consequences.

For a long time, biomedical researchers tried to understand how folding proceeds in detail. One of these questions was how folding helper enzymes work. For parvulins at least, one group of folding helper enzymes, new answers are at hand given by scientists from the Centre for Medical Biotechnology (ZMB) of University of Duisburg-Essen (UDE), Germany. Drs Peter Bayer and Jonathan W Mueller succeeded in visualising single hydrogen atoms within the core of highly diffracting crystals of the parvulin protein Par14. Their study was published in the Journal of the American Chemical Society.

Among others, folding helper enzymes of the parvulin type are responsible to fold and maintain proteins in their native three-dimensional structure. Though profound knowledge exists on structure and mechanism of these enzymes, the role of individual amino acids in the catalytic core of parvulins remained unknown to date.

Hydrogen atoms are extremely small and hence normally invisible to the X-ray eye when investigating proteins. Within the core of the protein Par14, however, they could be visualised in corporation with scientists from University of Bayreuth.

„This has helped us enormously. We could realise an intricate network of hydrogen bonds that connects different amino acids within the core of the protein,” Dr. Mueller says. If one of these amino acids is replaced by another protein building block, catalytic activity nearly completely vanishes. This is first proof that an extended network of hydrogen bonds is a central feature of parvulin-type folding helper enzymes.

Further information:

Drs. Peter Bayer and Jonathan W. Mueller, phone +49-201/183-4676, peter.bayer@uni-due.de, www.uni-due.de/biochemie

Editorial office: Beate H. Kostka, Tel. 0203/379-2430

Beate Kostka | idw
Further information:
http://www.uni-due.de/biochemie
http://pubs.acs.org/doi/abs/10.1021/ja2086195

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>