Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to fold proteins?

25.11.2011
For parvulins, one group of folding helper enzymes, new answers are at hand given by scientists from the Centre for Medical Biotechnology (ZMB) of University of Duisburg-Essen (UDE), Germany. Drs Peter Bayer and Jonathan W Mueller succeeded in visualising single hydrogen atoms within the core of highly diffracting crystals of the parvulin protein Par14.

Proteins are among the most important building blocks of life. To function properly within the body, their amino acid sequence needs to be folded into a defined three-dimensional structure within each cell. When this highly complex folding process fails, severe diseases such as cancer, Alzheimer’s or Parkinson’s can be the consequences.

For a long time, biomedical researchers tried to understand how folding proceeds in detail. One of these questions was how folding helper enzymes work. For parvulins at least, one group of folding helper enzymes, new answers are at hand given by scientists from the Centre for Medical Biotechnology (ZMB) of University of Duisburg-Essen (UDE), Germany. Drs Peter Bayer and Jonathan W Mueller succeeded in visualising single hydrogen atoms within the core of highly diffracting crystals of the parvulin protein Par14. Their study was published in the Journal of the American Chemical Society.

Among others, folding helper enzymes of the parvulin type are responsible to fold and maintain proteins in their native three-dimensional structure. Though profound knowledge exists on structure and mechanism of these enzymes, the role of individual amino acids in the catalytic core of parvulins remained unknown to date.

Hydrogen atoms are extremely small and hence normally invisible to the X-ray eye when investigating proteins. Within the core of the protein Par14, however, they could be visualised in corporation with scientists from University of Bayreuth.

„This has helped us enormously. We could realise an intricate network of hydrogen bonds that connects different amino acids within the core of the protein,” Dr. Mueller says. If one of these amino acids is replaced by another protein building block, catalytic activity nearly completely vanishes. This is first proof that an extended network of hydrogen bonds is a central feature of parvulin-type folding helper enzymes.

Further information:

Drs. Peter Bayer and Jonathan W. Mueller, phone +49-201/183-4676, peter.bayer@uni-due.de, www.uni-due.de/biochemie

Editorial office: Beate H. Kostka, Tel. 0203/379-2430

Beate Kostka | idw
Further information:
http://www.uni-due.de/biochemie
http://pubs.acs.org/doi/abs/10.1021/ja2086195

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>