Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foetus suffers when mother lacks vitamin C

16.11.2012
Maternal vitamin C deficiency during pregnancy can have serious consequences for the foetal brain. And once brain damage has occurred, it cannot be reversed by vitamin C supplements after birth. This is shown through new research at the University of Copenhagen just published in the scientific journal PLOS ONE.

Population studies show that between 10-20 per cent of all adults in the developed world suffer from vitamin C deficiency. Therefore, pregnant women should think twice about omitting the daily vitamin pill.

“Even marginal vitamin C deficiency in the mother stunts the foetal hippocampus, the important memory centre, by 10-15 per cent, preventing the brain from optimal development,” says Professor Jens Lykkesfeldt. He heads the group of scientists that reached this conclusion by studying pregnant guinea pigs and their pups. Just like humans, guinea pigs cannot produce vitamin C themselves, which is why they were chosen as the model.

“We used to think that the mother could protect the baby. Ordinarily there is a selective transport from mother to foetus of the substances the baby needs during pregnancy. However, it now appears that the transport is not sufficient in the case of vitamin C deficiency. Therefore it is extremely important to draw attention to this problem, which potentially can have serious consequences for the children affected,” says Jens Lykkesfeldt.

Too late when damage is done

The new results sharpen the focus on the mother’s lifestyle and nutritional status during pregnancy. The new study has also shown that the damage done to the foetal brain cannot be repaired, even if the baby is given vitamin C after birth.

When the vitamin C deficient guinea pig pups were born, scientists divided them into two groups and gave one group vitamin C supplements. However, when the pups were two months old, which corresponds to teenage in humans, there was still no improvement in the group that had been given supplements.

The scientists are now working to find out how early in the pregnancy vitamin C deficiency influences the development of foetal guinea pigs. Preliminary results show that the impact is already made early in the pregnancy, as the foetuses were examined in the second and third trimesters. Scientists hope in the long term to be able to use population studies to illuminate the problem in humans.

Vulnerable groups

There are some groups that may be particularly vulnerable of vitamin C deficiency:

“People with low economic status who eat poorly - and perhaps also smoke - often suffer from vitamin C deficiency. Comparatively speaking, their children risk being born with a poorly developed memory potential. These children may encounter learning problems, and seen in a societal context, history repeats itself because these children find it more difficult to escape the environment into which they are born,” says Jens Lykkesfeldt.

He emphasises that if pregnant women eat a varied diet, do not smoke, and for instance take a multi-vitamin tablet daily during pregnancy, there is no reason to fear vitamin C deficiency.

“Because it takes so little to avoid vitamin C deficiency, it is my hope that both politicians and the authorities will become aware that this can be a potential problem,” concludes Jens Lykkesfeldt.

Read the article in the scientific journal PLOS ONE.

Contact
Professor Jens Lykkesfeldt, Department of Veterinary Disease Biology, Biomedicine

Phone: +45 35333125

Professor Jens Lykkesfeldt | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

nachricht New map may lead to drug development for complex brain disorders, USC researcher says
25.07.2017 | University of Southern California

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA flights gauge summer sea ice melt in the Arctic

25.07.2017 | Earth Sciences

Fungi that evolved to eat wood offer new biomass conversion tool

25.07.2017 | Life Sciences

New map may lead to drug development for complex brain disorders, USC researcher says

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>