Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foetus suffers when mother lacks vitamin C

16.11.2012
Maternal vitamin C deficiency during pregnancy can have serious consequences for the foetal brain. And once brain damage has occurred, it cannot be reversed by vitamin C supplements after birth. This is shown through new research at the University of Copenhagen just published in the scientific journal PLOS ONE.

Population studies show that between 10-20 per cent of all adults in the developed world suffer from vitamin C deficiency. Therefore, pregnant women should think twice about omitting the daily vitamin pill.

“Even marginal vitamin C deficiency in the mother stunts the foetal hippocampus, the important memory centre, by 10-15 per cent, preventing the brain from optimal development,” says Professor Jens Lykkesfeldt. He heads the group of scientists that reached this conclusion by studying pregnant guinea pigs and their pups. Just like humans, guinea pigs cannot produce vitamin C themselves, which is why they were chosen as the model.

“We used to think that the mother could protect the baby. Ordinarily there is a selective transport from mother to foetus of the substances the baby needs during pregnancy. However, it now appears that the transport is not sufficient in the case of vitamin C deficiency. Therefore it is extremely important to draw attention to this problem, which potentially can have serious consequences for the children affected,” says Jens Lykkesfeldt.

Too late when damage is done

The new results sharpen the focus on the mother’s lifestyle and nutritional status during pregnancy. The new study has also shown that the damage done to the foetal brain cannot be repaired, even if the baby is given vitamin C after birth.

When the vitamin C deficient guinea pig pups were born, scientists divided them into two groups and gave one group vitamin C supplements. However, when the pups were two months old, which corresponds to teenage in humans, there was still no improvement in the group that had been given supplements.

The scientists are now working to find out how early in the pregnancy vitamin C deficiency influences the development of foetal guinea pigs. Preliminary results show that the impact is already made early in the pregnancy, as the foetuses were examined in the second and third trimesters. Scientists hope in the long term to be able to use population studies to illuminate the problem in humans.

Vulnerable groups

There are some groups that may be particularly vulnerable of vitamin C deficiency:

“People with low economic status who eat poorly - and perhaps also smoke - often suffer from vitamin C deficiency. Comparatively speaking, their children risk being born with a poorly developed memory potential. These children may encounter learning problems, and seen in a societal context, history repeats itself because these children find it more difficult to escape the environment into which they are born,” says Jens Lykkesfeldt.

He emphasises that if pregnant women eat a varied diet, do not smoke, and for instance take a multi-vitamin tablet daily during pregnancy, there is no reason to fear vitamin C deficiency.

“Because it takes so little to avoid vitamin C deficiency, it is my hope that both politicians and the authorities will become aware that this can be a potential problem,” concludes Jens Lykkesfeldt.

Read the article in the scientific journal PLOS ONE.

Contact
Professor Jens Lykkesfeldt, Department of Veterinary Disease Biology, Biomedicine

Phone: +45 35333125

Professor Jens Lykkesfeldt | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>